1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergiy2304 [10]
3 years ago
6

Help answer please help

Mathematics
2 answers:
Eddi Din [679]3 years ago
5 0
I think the answer is frequency table, but I’m not sure.. make your best guess or try asking other people.
Nitella [24]3 years ago
5 0

Answer:

The best was to display a set of data with a wide range would be

a histogram.

Step-by-step explanation:

It's a graphical display of bars which will help you measure the central tendency.

You might be interested in
Which is a valid proportion? 3 over 4 = 21 over 28
dangina [55]

Answer: I think that it is the first one

5 0
3 years ago
Write the standard form of the equation of each line. How do I find the slope and y-intercept with the graph for problem 6???
lisov135 [29]
The standard form for an equation is y=mx+b. You find the slope by using the formula of rise over run. This means that for problem 6 you first look to see if its positive or negative slope. The slope is positive if the line is going uphill and if its going downhill its negative. The slope would be negative for number 6 because it is going downhill. Then for the actualy slope you would start with rise. So you look at the point (0,1) and go up 3 until you hit the line of the other point and run over 2. So your slope would be -3/2.
5 0
3 years ago
This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th,
stich3 [128]

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula \frac{d}{dx} logx =\frac{1}{x}

Differentiating Equation(1) with respective to 'x' we get

f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)

f^{l} (x) = \frac{1}{1+x} (1)  ….(2)

At x= 0

f^{l} (0) = \frac{1}{1+0} (1)= 1

using formula \frac{d}{dx} x^{n-1}  =nx^{n-1}

Again Differentiating Equation(2) with respective to 'x' we get

f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))

f^{ll} (x) = \frac{-1}{(1+x)^2} (1)    ….(3)

At x=0

f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1

Again Differentiating Equation(3) with respective to 'x' we get

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)=  \frac{(-1)^2 (2)!}{(1+x)^3} ….(4)

At x=0

f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)

f^{lll} (0) = 2

Again Differentiating Equation(4) with respective to 'x' we get

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4} ....(5)

f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}

f^{lV} (0) = -6

Again Differentiating Equation(5) with respective to 'x' we get

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5} .....(6)

At x=0

f^{V} (x) = 24

Again Differentiating Equation(6) with respective to 'x' we get

f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

and so on...

The nth term is

f^{n} (x) =  = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}

Step :-2

Taylors theorem expansion of f(x) is

f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)

At x=a =0

f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

Substitute  all values , we get

f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

On simplification we get

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

4 0
3 years ago
Which transformation or sequence of transformations would produce an image that is not congruent to its pre‐image?
lianna [129]

Answer:

Ur answer will be B.

Step-by-step explanation:

A dilation will always create an image smaller or bigger than the pre-image making it not congruent since it changes in size.

7 0
2 years ago
Read 2 more answers
Solve for x: −3|2x + 6| = −12
Ivanshal [37]
-3|2x + 6| = -12 \\
|2x+6|=4\\
2|x+3|=4\\
|x+3|=2\\
x+3 =-2 \vee x+3=2\\
x=-5 \vee x=-1
4 0
4 years ago
Read 2 more answers
Other questions:
  • The female lion at the zoo weighed 190 pounds more than the female cheetah let C represent the weight in pounds of the cheetah w
    15·2 answers
  • Drag each tile to the correct box. Arrange the complex numbers in order according to the quadrant in which they appear, starting
    14·1 answer
  • a right triangle is rotated a round a line that includes one of the legs of the triangle. What figure is located?
    5·1 answer
  • Write the equation of the line that is parallel to the graph of y=-4x-9 and whose y intercept is 3
    9·1 answer
  • A certain solution has a hydrogen ion concentration of 3.54 x 10−5 moles per liter. Write this number in standard notation.
    5·1 answer
  • Is Cosine 3/ what is tangent in sin​
    15·1 answer
  • Write the cubic polynomial function f(x) in expanded form with zeros -5, -3, and 2, given that f(0) = -60.
    13·1 answer
  • Find m- d please and thank you
    10·1 answer
  • Each of 2 boxes of markers held 6 markers. Each of 3 packs of
    9·1 answer
  • Kevin and Randy Muise have a jar containing 65 ​coins, all of which are either quarters or nickels. The total value of the coins
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!