None of these. All of these functions are defined as ratio of trigonometric functions.
Trigonometric functions have infinite zeroes, so when you put them in the denominator, they lead to infinitely many points of ill-definition.
Specifically, we have:
![\csc(x) = \dfrac{1}{\sin(x)}](https://tex.z-dn.net/?f=%5Ccsc%28x%29%20%3D%20%5Cdfrac%7B1%7D%7B%5Csin%28x%29%7D)
which is undefined at
![\sin(x)=0\iff x=k\pi, k\in\mathbb{Z}](https://tex.z-dn.net/?f=%5Csin%28x%29%3D0%5Ciff%20x%3Dk%5Cpi%2C%20k%5Cin%5Cmathbb%7BZ%7D)
![\sec(x) = \dfrac{1}{\cos(x)}](https://tex.z-dn.net/?f=%5Csec%28x%29%20%3D%20%5Cdfrac%7B1%7D%7B%5Ccos%28x%29%7D)
which is undefined at
![\cos(x)=0\iff x=\dfrac{\pi}{2}+k\pi, k\in\mathbb{Z}](https://tex.z-dn.net/?f=%5Ccos%28x%29%3D0%5Ciff%20x%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%2Bk%5Cpi%2C%20k%5Cin%5Cmathbb%7BZ%7D)
![\tan(x) = \dfrac{\sin(x)}{\cos(x)}](https://tex.z-dn.net/?f=%5Ctan%28x%29%20%3D%20%5Cdfrac%7B%5Csin%28x%29%7D%7B%5Ccos%28x%29%7D)
which is undefined at
![\cos(x)=0\iff x=\dfrac{\pi}{2}+k\pi, k\in\mathbb{Z}](https://tex.z-dn.net/?f=%5Ccos%28x%29%3D0%5Ciff%20x%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%2Bk%5Cpi%2C%20k%5Cin%5Cmathbb%7BZ%7D)
![\cot(x) = \dfrac{\cos(x)}{\sin(x)}](https://tex.z-dn.net/?f=%5Ccot%28x%29%20%3D%20%5Cdfrac%7B%5Ccos%28x%29%7D%7B%5Csin%28x%29%7D)
which is undefined at
![\sin(x)=0\iff x=k\pi, k\in\mathbb{Z}](https://tex.z-dn.net/?f=%5Csin%28x%29%3D0%5Ciff%20x%3Dk%5Cpi%2C%20k%5Cin%5Cmathbb%7BZ%7D)
Answer:
x=12
Step-by-step explanation:
3x/6 + 2 = 8
Subtract 2 from each side
3x/6 + 2-2 = 8-2
3x/6 =6
Multiply each side by 6/3
6/3 * 3/6 x = 6 *6/3
x = 36/3
x = 12
The area of a sector is 339.336 cm²
The area of a sector is defined to be as the region of space bounded by a boundary from the center of the circle.
It can be determined by using the formula:
![\mathbf{A = \dfrac{\theta }{360}\times \pi r^2 }](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cdfrac%7B%5Ctheta%20%7D%7B360%7D%5Ctimes%20%5Cpi%20r%5E2%20%7D)
Given that;
- Radius r = 18 cm
- Angle θ = 120°
Then. the area of the sector can be calculated as:
![\mathbf{A = \dfrac{120}{360}\times \pi (18)^2 }](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cdfrac%7B120%7D%7B360%7D%5Ctimes%20%5Cpi%20%2818%29%5E2%20%7D)
![\mathbf{A = \dfrac{1}{3}\times 3.142 \times 324 }](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%203.142%20%5Ctimes%20324%20%7D)
A = 339.336 cm²
Learn more about the area of a sector here:
brainly.com/question/7512468?referrer=searchResults
Answer:
SA = 748π in²
General Formulas and Concepts:
<u>Symbols</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²
- <em>r</em> is radius
- <em>h</em> is height
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
<em>r</em> = 11 in
<em>h</em> = 23 in
<u>Step 2: Find Surface Area</u>
- Substitute in variables [Surface Area of a Cylinder Formula]: SA = 2π(11 in)(23 in) + 2π(11 in)²
- Evaluate exponents: SA = 2π(11 in)(23 in) + 2π(121 in²)
- Multiply: SA = 506π in² + 242π in²
- Add: SA = 748π in²
Answer:
4cm
Step-by-step explanation:
the diameter is labelled as 8cm
radius is half of the diameter