Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!
Answer:
god says dont use any assault language okay?
Explanation:
The bathtub of water would melt the most ice because it has a larger area
Answer:
a) Step 1:

Step 2:

b) The overall balanced reaction for given process is ;

Explanation:
a)
Galena = 
Lead(II) oxide = 
Sulfur dioxide = 
Step 1:
Roasting the galena in oxygen gas to form lead(II) oxide and sulfur dioxide.
Balanced equation of step 1:
..[1]
Step 2:
Heating the metal oxide with more galena forms the molten metal and more sulfur dioxide.
Balanced equation of step 2:
..[2]
b)
For over all reaction add [1] and [2]. The overall balanced reaction for given process is ;
