step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2
80Nm I'm pretty sure this is the answer if I'm wrong I'm sorry but I'm positive it the answer
Lithium Arsenate - Li3AsO4 (160g/mol). So, it’s 2,13 mol * 160 g/mol = 340,8 g.
There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. Dispersal involves the letting go or detachment of a diaspore from the main parent plant.
Fruits and seeds dispersal is the process whereby fruits and seeds are scattered from their origin. The various ways by which fruit and seed are dispersed are known as agents of seed and fruit dispersal.
Check this link out for more information
https://qknowbooks.gitbooks.io/fruits-and-seeds/content/fruits_and_seeds_dispersal.html
Answer:
Explanation:
In Pre-AP Chemistry, the development of models to explain their macroscopic observations is a primary means through which students develop an understanding of the molecular world.
You will be forced to think and apply concepts to new situations, and even derive your own theories from application. This is excellent preparation for the higher levels of thinking required in college.
Chemistry, the science that deals with the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that is released or absorbed during these processes.