Suppose that the value of other ratio is equal to 6/3 then, 
20/3x-8 = 6/3
18x-48 = 60
18x = 60+48
18x = 108
x = 6
        
                    
             
        
        
        
You must find the relative rates of both workers...
T=f/3 and J=f/2  so if they work together to clear the field then:
ft/3+ft/2=f  make all terms have a common denominator of 6
(2/2)(ft/3)+(3/3)(ft/2)=(6/6)f
2ft/6+3ft/6=6f/6  multiply both sides by 6
2ft+3ft=6f  divide both sides by f
2t+3t=6  combine like terms on left side
5t=6  divide both sides by 5
t=6/5 hr
t=1 1/5 hr
t=1 hr 12 min
        
             
        
        
        
Answer:
y=1/2×+4 
Step-by-step explanation:
i think that the answer 
 
        
             
        
        
        
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2264253_______________
Evaluate the indefinite integral:

Trigonometric substitution:

then,
![\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Blcl%7D%20%5Cmathsf%7Bx%3Dsin%5C%2C%5Ctheta%7D%26%5Cquad%5CRightarrow%5Cquad%26%5Cmathsf%7Bdx%3Dcos%5C%2C%5Ctheta%5C%2Cd%5Ctheta%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3Dsin%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3D1-cos%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5E2%5C%2C%5Ctheta%3D1-x%5E2%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5C%2C%5Ctheta%3D%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Ctextsf%7Bbecause%20%7D%5Cmathsf%7Bcos%5C%2C%5Ctheta%7D%5Ctextsf%7B%20is%20positive%20for%20%7D%5Cmathsf%7B%5Ctheta%5Cin%20%5Cleft%5B%5Cdfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D%20%5Cend%7Barray%7D)
So the integral 

 becomes

Integrate 

 by parts:


Substitute back for the variable x, and you get

I hope this helps. =)
Tags:  <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>