The triangles ABC and EDF are congruent, meaning they have the same side lengths and angles measures.
The measure of DF, as both triangles are congruent, is equal to the measure of BC.
We can calculate the length of BC using the distance formula:
![\begin{gathered} D=\sqrt[]{(x_c-x_b)^2+(y_c-y_b_{})^2} \\ D=\sqrt[]{(2-2)^2+(-1-4)^2} \\ D=\sqrt[]{0^2+(-5)^2} \\ D=\sqrt[]{(-5)^2} \\ D=|-5| \\ D=5 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28x_c-x_b%29%5E2%2B%28y_c-y_b_%7B%7D%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%282-2%29%5E2%2B%28-1-4%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B0%5E2%2B%28-5%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28-5%29%5E2%7D%20%5C%5C%20D%3D%7C-5%7C%20%5C%5C%20D%3D5%20%5Cend%7Bgathered%7D)
As BC is congruent with DF and BC=5, the length of DF is 5 units.
Yes that is correct
answer
AAS congruence theorem
<M = <P
<MNR = <PNQ
RN = NQ
Answer:
The percent decrease is approximately 
(Don't know what you are expected to round to.)
Step-by-step explanation:
Percent change can be calculated by doing:

Then you multiply the result to covert it to a percentage.
Let's use this formula:




approximately
Now the answer as a percent is
approximately.
The percent decrease is approximately 