Answer:
The rate constant of the reaction at 125˚ is
.
Explanation:
The Arrhenius equation is a simple equation that describes the dependent relationship between temperature and the rate constant of a chemical reaction. The Arrhenius equation is written mathematically as


where
is the rate constant,
represents the activation energy of the chemical reaction,
is the gas constant,
is the temperature, and
is the frequency factor.
The frequency factor,
, is a constant that is derived experimentally and numerically that describes the frequency of molecular collisions and their orientation which varies slightly with temperature but this can be assumed to be constant across a small range of temperatures.
Consider that the rate constant be
at an initial temperature
and the rate constant
at a final temperature
, thus


Given that
,
,
,
, and
, therefore,
Answer:
335.25g
Explanation:
using equation of molarity
First convert the kg to g ----- 0.03kg = 30g
Then divide the mass by the volume ----- 30g ÷ 25mL = 1.2
The density is 1.2g/mL<span />
I don’t see any questions
Explanation:
In laboratory, carbon dioxide is not obtained from the air, carbon dioxide is prepared from carbonates by adding acids to the carbonates. In this experiment carbon dioxide is prepared by the reaction of marble with hydrochloric acid.