Answer:
The velocity of the student has after throwing the book is 0.0345 m/s.
Explanation:
Given that,
Mass of book =1.25 kg
Combined mass = 112 kg
Velocity of book = 3.61 m/s
Angle = 31°
We need to calculate the magnitude of the velocity of the student has after throwing the book
Using conservation of momentum along horizontal direction


Put the value into the formula


Hence, The velocity of the student has after throwing the book is 0.0345 m/s.
A would be the wavelength, C would be a crest, D would be the amplitude, leaving B which is the trough.
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.