Answer:
b liquids
Explanation:
this is because liquids take the shape of  their container while solids stay solid and do not change shape and solids, liquids and gases all have definite volume.
 
        
             
        
        
        
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
        
             
        
        
        
Answer:
Hence the weight of the person on the moon is 162.4, and the value of g used is 1.624 m/s²
Explanation:
from the question,
W = mg........................ Equation 1
Where W = weight of the man on Earth, m = mass of the man, g = acceleartion due to gravity of the man
make m the subject of the equation
m = W/g.............. Equation 2
Given: W = 1000 N,
Constant: g = 10 m/s²
Therefore,
m = 1000/10
m = 100 kg
Weight on the moon
W' = mg'
W' = 100(1.624)
W' = 162.4 N.
Hence the weight of tthe person on the moon is 162.4, and the value of g used is 1.624 m/s²
 
        
             
        
        
        
<u>Answer</u>
4.6 m/s to the right. 
<u>Explanation</u>
Velocity is a vector quantity. It has both magnitude and direction.
Taking the 5.8 m/s  moving to the right as positive, then the 1.2 m/s moving to the left will be negative. 
∴ 5.8 + -1.2 = 5.8 - 1.2
                    = 4.6 m/s.
The resultant velocity vector is 4.6 m/s to the right.