Note: The height of the room must be 3 m instead of 3 cm because 3 cm is too small and it cannot be the height of a room.
Given:
Perimeter of the floor of a room = 18 metre
Height of the room = 3 metre
To find:
The area of 4 walls of the room.
Solution:
We know that, the area of 4 walls of the room is the curved surface area of the cuboid room.
The curved surface area of the cuboid is
Where, h is height, l is length and b is breadth.
Perimeter of the rectangular base is 2(l+b). So,
Putting the given values, we get
Therefore, the area of 4 walls of the room is 54 sq. metres.
Answer:
3n + 75
Step-by-step explanation:
Multiply n by 3 = 3n
Multiply 25 by 3 = 75
The simplified form for (3x² + 2y² - 5x + y) + (2x² - 2xy - 2y² -5x + 3y) is (5x² + 0y² - 10x + 4y - 2xy).
<h3>A quadratic equation is what?</h3>
At least one squared term must be present because a quadratic is a second-degree polynomial equation. It is also known as quadratic equations. The answers to the issue are the values of the x that satisfy the quadratic equation. These solutions are called the roots or zeros of the quadratic equations. The solutions to the given equation are any polynomial's roots. A polynomial equation with a maximum degree of two is known as a quadratic equation, or simply quadratics.
<h3>How is an equation made simpler?</h3>
The equation can be made simpler by adding up all of the coefficients for the specified correspondent term through constructive addition or subtraction of terms, as suggested in the question.
Given, the equation is (3x² + 2y² - 5x + y) + (2x² - 2xy - 2y² -5x + 3y)
Removing brackets and the adding we get,
3x² + 2x² + 2y² - 2y² + (- 5x) + (- 5x) + y + 3y + (- 2xy) = (5x² + 0y² - 10x + 4y - 2xy)
To learn more about quadratic equations, tap on the link below:
brainly.com/question/1214333
#SPJ10
1224+339=1563
Answer is 1,563 feet. Hope this helps.