The answer is The loudness of sound is related to its amplitude, this is off edmentum exactly so I advise changing up the wording. You can say something about the pitch or you can word it like, The sound of the wave is related to how loud the sound can be. Hope this helped
To cool 156 g of water from 42.9 °C to 20.5 °C, 101 g of CF₂Cl₂ are required.
CF₂Cl₂ is a refrigerant. When it is evaporated, it absorbs heat from water, which cools.
<h3>What is evaporation?</h3>
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase.
- Step 1: Calculate the heat released by water.
We will use the following expression.
Qw = c × m × ΔT = (4.184 J/g.°C) × 156 g × (20.5 °C - 42.9 °C)
Qw = -14.6 kJ
where,
- Qw is the heat released by water.
- c is the specific heat of water.
- m is the mass of water.
- ΔT is the change in the temperature of water.
If water releases 14.6 kJ of heat, CF₂Cl₂ absorbs 14.6 kJ of heat (Qr = 14.6 kJ).
- Step 2: Calculate the mass of the refrigerant required.
We will use the following expression.
Qr = ΔH°evap × m
m = Qr/ΔH°evap = 14.6 kJ / (0.144 kJ/g) = 101 g
where,
- Qr is the heat absorbed by the refrigerant.
- ΔH°evap is the heat of vaporization of the refrigerant.
- m is the mass of the refrigerant.
To cool 156 g of water from 42.9 °C to 20.5 °C, 101 g of CF₂Cl₂ are required.
Learn more about evaporation here: brainly.com/question/25310095
The water molecules now are moving slow enough that when they get close to one another, their mutual electrical attraction is able to hold them together.
266000 = 2.66 x 10^5
hope this helps