Answer:
Qualitative: Physical observations (the sky is blue, the water is boiling, etc.)
Quantitative: Numberical observations (density= 1 g/ml, volume= 14 ft^3, etc.)
Explanation:
The way to remember it is quaLitative is qualities of the object. QuaNtitative is quantities of the object.
Step 1: Write Imbalance Equation
CH₃CHO + O₂ → CO₂ + H₂O
Step 2: Balance Carbon Atoms:
There are 2 carbon atoms at reactant side and one at product side. So multiply CO₂ with 2 to balance them. i.e.
CH₃CHO + O₂ → 2 CO₂ + H₂O
Step 3: Balance Hydrogen Atoms:
There are 4 hydrogen atoms at reactant side and 2 Hydrogen atoms at product side. So, multiply H₂O by 2 to balance Hydrogen on both sides. i.e.
CH₃CHO + O₂ → 2 CO₂ + 2 H₂O
Step 4: Balance Oxygen Atoms:
There are 3 Oxygen atoms at reactant side and 6 Oxygen atoms at product side. In order to balance them multiply O₂ on reactant side by 2.5 (5/2). i.e
CH₃CHO + 5/2 O₂ → 2 CO₂ + 2 H₂O
Step 6: Eliminate Fraction:
Multiply overall equation by 2 to eliminate fraction. i.e.
2 CH₃CHO + 5 O₂ → 4 CO₂ + 4 H₂O
C3H8 + O2 --> CO2(g) + H2O(g) + energy(heat)
butane + oxygen --> carbon dioxide + water + heat
Answer:
250 kJ
Explanation:
Step 1: Given data
- Work performed by the system (w): 145 kJ (By convention, when the system performs work on the surroundings, w > 0)
- Heat absorbed by the system (q): 105 kJ (By convention, when the system absorbs heat from the surroundings, q > 0)
Step 2: Calculate the change in the internal energy of the system
The internal energy of a thermodynamic system is the energy contained within it. We can calculate the change in the internal energy (ΔE°) using the following expression.
ΔE° = q + w
ΔE° = 105 kJ + 145 kJ = 250 kJ