From the definition of the first Law of thermodynamics we know that heat flows from the hottest object to the coldest. What has a refrigerator inside is a refrigerant that is traveling through some heat exchangers, driven by pumps and that allows the exchange of heat between a 'Hot' tank and then transport it to a certain place, eject it and return to extract more heat. In this way the refrigerant removes heat from a hot region to a cold region and heat enters said hot region. Since the heat extracted is greater than that of the medium, the heat from the inside flows outward.
The correct answer is B.
Answer:
Δy = 6.05 mm
Explanation:
The double slit phenomenon is described by the expression
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference
m = 0,±1, ±2, ...
As they tell us that they measure the dark stripes, we are in a case of destructive interference, let's use trigonometry to find the sins tea
tan θ = y / x
y = x tan θ
In the interference experiments the measured angle is very small so we can approximate the tangent
tan θ = sin θ / cos θ
cos θ = 1
tan θ = sin θ
y = x sin θ
We substitute in the destructive interference equation
d (y / x) = (m + ½) λ
y = (m + ½) λ x / d
The first dark strip occurs for m = 0 and the third dark strip for m = 2. Let's find the distance for these and subtract it
m = 0
y₀ = (0+ ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₀ = 1.511 10⁻³ m
m = 2
y₂ = (2 + ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₂ = 7.556 10⁻³ m
The separation between these strips is Δy
Δy = y₂-y₀
Δy = (7.556 - 1.511) 10⁻³
Δy = 6.045 10⁻³ m
Δy = 6.05 mm
Complete question is;
The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?
Answer:
13 m
Explanation:
We are given;
Distance between two nearly parallel mirrors; d = 6.5 m
Distance between the face and the nearer mirror; x = 3 m
Thus, the distance between the back-head and the mirror = 6.5 - 3 = 3.5m
Now, From the given values above and using the law of reflection, we can find the distance of the first reflection of the back of the head of the person in the rear mirror.
Thus;
Distance of the first reflection of the back of the head in the rear mirror from the object head is;
y' = 2y
y' = 2 × 3.5
y' = 7
The total distance of this image from the front mirror would be calculated as;
z = y' + x
z = 7 + 3
z = 10
Finally, the second reflection of this image will be 10 meters inside in the front mirror.
Thus, the total distance of the image of the back of the head in the front mirror from the person will be:
T.D = x + z
T.D = 3 + 10
T.D = 13m
Answer:
when an object is moving
Explanation:
it turns into kinetic energy
initial velocity is given as 41 km/h at 60 degree North of West


After some time the velocity is given as

now we can find the acceleration



now the distance is given by




so the magnitude of distance is
