Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:
Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,
Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:
Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is
Replacing we have that,
Therefore there is a loss of fluid in the container of 0.475L
Answer:Your life is your responsibility.
Explanation:
Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Answer:
+7.0 m/s
Explanation:
Let's take rightward as positive direction.
So in this problem we have:
a = -2.5 m/s^2 acceleration due to the wind (negative because it is leftward)
t = 4 s time interval
v = -3.0 m/s is the final velocity (negative because it is leftward)
We can use the following equation:
v = u + at
Where u is the initial velocity
We want to find u, so if we rearrange the equation we find:
and the positive sign means the initial direction was rightward.