The speed
of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.
We are given that-
the mass of the elevator (m) = 1000 kg ;
the distance the elevator decelerated to be y = 8m ;
the tension is T = 11000 N;
let us determine the acceleration 'a' by using Newton's second law of motion.
∑Fy = ma
W - T = ma
(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a
9800 - 11000 = 1000
a = - 1.2 m/s²
Using the equation of kinematics to determine the initial velocity.
² =
² + 2ay
= √ ( 2 x 1.2m/s² x 8 m )
= √19.2 m²/s²
= 4.38 m/s ≈ 4 m/s
Hence, the initial velocity of the elevator is 4m/s.
Read more about the Equation of kinematics:
brainly.com/question/12351668
#SPJ4
Answer:
8046.72 meters pretty sure
<span>The average weather of a particular place is "Climate"
In short, Your Answer would be Option B
Hope this helps!</span>
solution;
given
- speed of wave= frequency×wavelength
=460×18
= 8280m/s
Explanation:
<h2>first of all given should be written & by using the formula of speed of sound .</h2>
Answer:
1) Time interval Blue Car Red Car
0 - 2 s Constant Velocity Increasing Velocity
2 - 3 s Constant Velocity Constant Velocity
3 - 5 s Constant Velocity Increasing Velocity
5 - 6 s Constant Velocity Decreasing Velocity
2) For Red and Blue car y₂ = 120 v =
=
= 20 m/s
We get the same velocity for two cars because it is the average velocity of the car at the given interval of time. It is measured for initial and final position.
3) At t = 2s, the cars are the same position, and are moving at the same rate
Position - same
Velocity - same
The position-time graph shares the same spot for two cars.