You've failed because you failing becomes a statement rather than it becoming fact or what actually happened.
Answer:
the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s
Explanation:
Pitot tube

U = velocity(m/s)
= stagnation pressure (pa)
= static pressure (pa)
d = fluid density(kg/m³)

v = true velocity
= 101325 + 1/2(1.225)(25)²


d = 1.225kg/m³

the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
Answer:
Explanation:
Given that,
Mass of sledge hammer;
Mh =2.26 kg
Hammer speed;
Vh = 64.4 m/s
The expression fot the kinetic energy of the hammer is,
K.E(hammer) = ½Mh•Vh²
K.E(hammer) = ½ × 2.26 × 64.4²
K.E ( hammer) = 4686.52 J
If one forth of the kinetic energy is converted into internal energy, then
ΔU = ¼ × K.E(hammer)
∆U = ¼ × 4686.52
∆U = 1171.63 J
Thus, the increase in total internal energy will be 1171.63 J.