Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
False, the inertia does not keep us moving in a circle on a spinning ride at the fair.
Answer: Option B
<u>Explanation:
</u>
Inertia is the resisting force of any object which resists in change in their state. If an object is moving the inertia will act in opposing direction to the force acting on the object stopping its motion.
Similarly, if an object resembles at rest, then the inertia will be acting against the force tending to move that stationary object. So, on a spinning ride at fair, when a person sits there, the inertia acting on the person will prevent the person to falling down from the fair and not in moving in a circle.
Answer:
hi, this is the answer
Explanation:
A horizontal line on a distance-time graph shows no change in distance, therefore there is no motion.
The object is stationary. ...
Constant speed is motion that occurs with the same ratio of distance to time throughout the entire length of the motion.
pls mark this as the brainliest...
Cooking and Serving. Cook raw shell eggs that are broken for immediate preparation and service to heat all parts of the food to a temperature of 63°C<span> (</span>145°F<span>) for 15 seconds</span>
Acceleration= change in velocity/time