Answer:
The tiger would not be able to produce glucose causing it to stop running
Explanation:
Since the mitochondria is in charge of producing ATP the tiger would not be able to use any glucose causing it to not be able to run.
Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Answer:
wo = 18.75 rev / s
Explanation:
This is an exercise in endowment kinematics, it indicates that the final angular velocity is w_f = 109 rad / s, the time to reach this velocity is t = 1.87 s and the deceleration a = 4.7 rad / s²
w_f = w₀ - a t
w₀ = w_f + a t
w₀ = 109 + 4.7 1.87
w₀ = 117.8 rad / s
let's reduce to revolutions / s
w₀ = 117.8 rad / s (1 rev / 2pi rad)
w₀ = 18.75 rev / s
Answer: The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increased by 2.0 kg, the period is found to be 3.0 s. Then the mass m is 0.625kg.
Explanation: To find the answer, we need to know more about the simple harmonic motion.
<h3>
What is simple harmonic motion?</h3>
- A particle is said to execute SHM, if it moves to and fro about the mean position under the action of restoring force.
- We have the equation of time period of a SHM as,

- Where, m is the mass of the body and k is the spring constant.
<h3>How to solve the problem?</h3>

- We have to find the value of m,


Thus, we can conclude that, the mass m will be 0.625kg.
Learn more about simple harmonic motion here:
brainly.com/question/28045110
#SPJ4
Answer: Option (b) is the correct answer.
Explanation:
Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.
Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.
Thus, we can conclude that negative charge spread evenly on both ends.