1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
14

What is the basic unit for volume

Physics
2 answers:
Marta_Voda [28]3 years ago
4 0

The basic measurement of volume is the liter.

Zigmanuir [339]3 years ago
3 0

Basic unit of length = [length] = meter

Basic unit of area = [length²]  =  meter²

Basic unit of volume = [length³]  =  meter³

You might be interested in
A bowling ball of mass 5.8 kg moves in a straight line at 4.34 m/s How fast must a Ping-Pong ball of mass 2.214 g move in a stra
lilavasa [31]

Answer: 11369.46 m/s

Explanation:

We have the following data:

m_{1}=5.8 kg is the mass of the bowling ball

V_{1}=4.34 m/s is the velocity of the bowling ball

m_{2}=2.214 g \frac{1 kg}{1000 g}=0.002214 kg is the mass of the ping-pong ball

V_{2} is the velocity of the ping-pong ball

Now, the momentum p_{1} of the bowling ball is:

p_{1}=m_{1}V_{1} (1)

p_{1}=(5.8 kg)(4.34 m/s)  

p_{1}=25.172 kg m/s (2)

And the momentum p_{2} of the ping-pong ball is:

p_{2}=m_{2}V_{2} (3)

If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:

p_{1}=p_{2} (4)

m_{1}V_{1}=m_{2}V_{2} (5)

Isolating V_{2}:

V_{2}=\frac{m_{1}V_{1}}{m_{2}} (6)

V_{2}=\frac{25.172 kg m/s}{0.002214 kg} (7)

Finally:

V_{2}=11369.46 m/s

6 0
3 years ago
Are any rocks that form from another rock as a result of change in blank or blank
charle [14.2K]
The correct answer is rock cycle
3 0
4 years ago
A sound source is moving at 80 m/s toward a stationary listener that is standing in still air (a) Find the wavelength of the sou
Setler [38]

Answer:

a. wavelength of the sound, \vartheta = 1.315\vartheta_{o}

b. observed frequecy, \lambda = 0.7604\lambda_{o}

Given:

speed of sound source, v_{s} = 80 m/s

speed of sound in air or vacuum, v_{a} = 343 m/s

speed of sound observed, v_{o} = 0 m/s

Solution:

From the relation:

v = \vartheta \lambda        (1)

where

v = velocity of sound

\vartheta = observed frequency of sound

\lambda = wavelength

(a) The wavelength of the sound between source and the listener is given by:

\lambda = \frac{v_{a}}{\vartheta }         (2)

(b) The observed frequency is given by:

\vartheta = \frac{v_{a}}{v_{a} - v_{s}}\vartheta_{o}

\vartheta = \frac{334}{334 - 80}\vartheta_{o}

\vartheta = 1.315\vartheta_{o}                (3)

Using eqn (2) and (3):

\lambda = \frac{334}{1.315} = \frac{1}{1.315}\frac{v_{a}}{\vartheta_{o}}

\lambda = 0.7604\lambda_{o}

4 0
3 years ago
Two cars cover the same distance in a straight line. Car a covers the distance at a constant velocity. Car b starts from rest an
Artyom0805 [142]

a) For the motion of car with uniform velocity we have , s = ut+\frac{1}{2}at^2, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.

In this case s = 520 m, t = 223 seconds, a =0 m/s^2

Substituting

       520 = u*223\\ \\u = 2.33 m/s

 The constant velocity of car a = 2.33 m/s

b) We have s = ut+\frac{1}{2} at^2

s = 520 m, t = 223 seconds, u =0 m/s

Substituting

      520 = 0*223+\frac{1}{2} *a*223^2\\ \\ a = 0.0209 m/s^2

Now we have v = u+at, where v is the final velocity

Substituting

        v = 0+0.0209*223 = 4.66 m/s

So final velocity of car b = 4.66 m/s

c) Acceleration = 0.0209 m/s^2

7 0
3 years ago
Three charges are located at a different position in a plane: q1= 10μC at →r1=(5,6)cm q2=−27μC at →r2=(−6,10)cm and q3=−12μC at
sasho [114]

Answer:

 E = (2.29 i ^ - 0.917 j ^) 10⁶ N / C

 E_{total} = 2,467 10⁶ N / A       θ = -21.8      

Explanation:

For this exercise we will use that the electric field is a vector quantity, so the total field is

        E_total = E₁₃ + E₂₃

bold font vectors .  We can work with the components of the electric field in each axis

X- axis

       E_ total x = E₁₃ₓ + E_{23x}

y-axis  

      E_{total y} = E_{13y} + E_{23y}

the expression for the electric field is

       E = k q / r²

where r is the distance between the charge and the positive test charge

       

in this exercise

Let's find the field created by charge 1

q₁ = 10 μC = 10 10⁻⁶ C

x₁ = 5 cm = 0.05 m

x₃ = 21 cm = 0.21 m

         E_{13x} = 9 10⁹ 10 10⁻⁶ / (0.21 -0.05)²

         E_{13x} = 3.516 10⁶ N / C

y₁ = 6 cm = 0.06 cm

y₃ = -12 cm = -0.12 m

        E_{13y} = 9 10⁹ 10 10⁻⁶ / (-0.12 - 0.06)²

        E_{13y} = 2,777 10⁶ N / C

let's find the field produced by charge 2

q₂ = -27 μC = - 27 10⁻⁶ C

x₂ = -6 cm = -0.06 m

x₃ = 0.21 m

        E_{23x} = 9 10⁹ 27 10⁻⁶ / (0.21 + 0.06)²

        E_{23x} = 1.23 10⁶ N / A

y₂ = 10 cm = 0.10 m

y₃ = -0.12 m

        E_{23y} = 9 10⁹ 27 10⁻⁶ / (-0.12 - 0.10)²

        E_{23y} = 1.86 10⁶ N / C

Taking the components we can calculate the total electric field, we must use that charge of the same sign repel and attract the opposite sign, remember that the test charge is always considered positive.

       E_{total x} = E_{13x} - E_{23x}

       E_{total x} = (3.516 - 1.23) 10⁶

       E_{total x} = 2.29 10⁶ N / A

       

       E_{total y} = -E_{13y} + E_{23y}

       E_{total y} = (-2.777 +1.86) 10⁶ N / A

       E_{total y} = -0.917 10⁶ N / A

we can give the result in two ways

         E = (2.29 i ^ - 0.917 j ^) 10⁶ N / C

or in the form of modulus and angle, let's use the Pythagorean theorem to find the modulus

                E_{total} = √ (E_{total x}^2 + E_{total y}^ 2)

                 E_{total} = √ (2.29² + 0.917²) 10⁶

                E_{total} = 2,467 10⁶ N / A

let's use trigonometry for the angle

                tan θ = E_total and / E_totalx

                θ = tan⁻¹ E_{total y} / E_{total x}

                θ = tan⁻¹ (-0.917 / 2.29)

                θ = -21.8

The negative sign indicates that the angle is measured with respect to the x-axis in a clockwise direction.

7 0
3 years ago
Other questions:
  • When you are paddling a canoe, you push the water backwards with your paddle, which in turn will push you forward. Which law of
    12·1 answer
  • Two large books are stacked on top of each other on a table . The mass of each book is 6.5Kg Given that the coefficient of stati
    13·1 answer
  • You’ll get 100 points for answering this quick question
    15·2 answers
  • Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you.
    13·2 answers
  • A small ferryboat is 4.70 m wide and 6.10 m long. When a loaded truck pulls onto it, the boat sinks an additional 5.00 cm into t
    11·1 answer
  • The states that mas cannot be created or destroyed
    15·2 answers
  • A person takes a trip, driving with a constant speed of 89.5 km/h, except for a 22.0-min rest stop. If the person’s average spee
    8·1 answer
  • A car accelerates on a horizontal road due to the force exerted by :
    9·1 answer
  • scrieti in caiete substantivele ,adjectivele sau verbele apartinand familiei lexicale a urmatoarelor cuvinte din text : inima,ar
    13·1 answer
  • What is the momentum of a 3 kg bowling ball moving at 3 m/s?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!