Answer:
Weight of the car, normal force, drag force
Explanation:
The forces acting on the car are:
- The normal force which acts perpendicularly to the downhill plane
- The weight of the car which acts vertically downwards
- The drag force due to air resistance which acts in opposition to the motion of the car
Friction is ignored, so the force due to friction is assumed negligible
Answer:
An object is said to be in motion when it changes its place with time and respect to its surrounding.
Explanation:
Hope this helps :)
Based on the sped of the waves and the tension as well as the needed wave speed, the required tension is 13.5 N.
<h3>What is the required tension?</h3>
Given the initial tension and speed, the tension that is required can be found by the formula:
= Initial tension x (Required speed / Initial speed)²
Solving gives:
= 6 x (30 / 20)²
= 6 x 9/4
= 13.5 N
In conclusion, the tension required is 13.5N.
Find out more on the tension on a wire at brainly.com/question/14290894.
#SPJ4
Given :
A 13.3 kg box sliding across the ground decelerates at 2.42 m/s².
To Find :
The coefficient of kinetic friction.
Solution :
Frictional force applied to the box is :
....1)
Also, force of friction is given by :
....2)
Equating equation 1) and 2), we get :

Therefore, the coefficient of kinetic friction is 0.247 .
Answer:
If external is force applied
Explanation: