Le Chatelier's Principle says that when something disrupts the equilibrium, the system adjusts to minimize the effect of that disturbance. If 0.1 M HCl solution is added, this dissociates into H+ and Cl- ions, so there will be more Cl- ions in the system. This causes the reaction to go in the reverse direction (equilibrium shifts to the left) to reduce the amount of Cl-.
Since this also consumes Ag+ ions, the concentration of Ag+ (aq) will decrease.
The answer is the second choice.
Okay
Mr (H2O)= 18g
therefore moles of H2O
is 720.8/18= 40.04mol
the ratio of H2 to O2 to H2O is
2 : 1 : 2
so moles of H2 is same as H2O here
H2= 40.04moles
moles of O2 is half
so 40.04 x 0.5
20.02moles
grams of O2 is
its moles into Mr of O2
that's 20.02 x 32 = 640.64g
Answer:
The concentration of hydroxide ions is 3.02*10⁻³ M
Explanation:
The pOH (or OH potential) is a measure of the basicity or alkalinity of a contamination and is defined as the negative logarithm of the activity of the hydroxide ions. That is, the concentration of OH- ions:
pOH= -log [OH-]
The pOH has a value between 0 and 14 in aqueous solution, the solutions with pOH being greater than 7 being acidic, and those with pOH less than 7 being basic.
If pOH= 2.52 then
2.52= -log [OH-]
[OH-]= 3.02*10⁻³ M
<u><em>The concentration of hydroxide ions is 3.02*10⁻³ M</em></u>
<u><em></em></u>
The ions present in the solution of Na₃PO₄ are:
3Na⁺¹ and 1PO₄⁻³
there are 3 sodium ions (Na⁺¹) are present, these are cations (+).
And 1 phosphate ion (PO₄⁻³) is present, this is anion (-),
When these cations and ions meet together a compound is formed, in this case 3 sodium ions make a bond with 3 oxygens of phosphate and makes a compound of sodium phosphate.
Sound waves are produced by air flow coming from our lungs passing through our throat, more specifically our larynx and moving with two folds of tissue called vocal chords. The sound is made by the vibration of vocal chords, so the more stretched the chords are over the larynx, their frequency of vibration is higher, therefore producing higher-pitched sounds.