Answer:
665 g
Explanation:
Let's consider the following thermochemical equation.
2 C₄H₁₀(g) + 13 O₂(g) → 8 CO₂(g) + 10 H₂O(l), ΔH°rxn= –5,314 kJ/mol
According to this equation, 5,314 kJ are released per 8 moles of CO₂. The moles produced when 1.00 × 10⁴ kJ are released are:
-1.00 × 10⁴ kJ × (8 mol CO₂/-5,314 kJ) = 15.1 mol CO₂
The molar mass of CO₂ is 44.01 g/mol. The mass corresponding to 15.1 moles is:
15.1 mol × 44.01 g/mol = 665 g
Answer: By understanding conversion factors and how they are related to each other
Explanation:
Dimensional Analysis is a step by step approach to solving problems in Physics, Chemistry , and Mathematics. It involves having a clear knowledge and understanding to be able to convert a given unit to another in the same dimension using conversion factors and knowing how they are related to each other.
For instance, In Chemistry, we want to Convert 120mL to L.(note that ml stands for millilitres and ;L stands for litres)
Or first approach will be to write out the conversion factor related to our problem which is
1000ml =1L
such that 120ml = (we cross multiply))
giving us 120ml x 1L/1000ml =0.12L
This same process is applied to convert any type of dimensional analysis problems be it physics or mathematics.
Lowered cos the higher the ph the lower the hydrogen ions
Answer: 1.9 x 10²⁴ molecules Na
Explanation: To solve for the molecules of Na, we will use the Avogadro's number.
3.2 moles Na x 6.022 x10²³ molecules Na/ 1 mole Nà
= 1.9 x 10²⁴ molecules Na
Answer:
Time = 0.929s = 0.93s (2 s.f)
Explanation:
Rate constant, k = 34.1 M^-1s^-1
Initial Concentration, [A]o = 0.100M
Time = ?
Final Concentration [A] = 0.0240M
The parameters are represented in the following equation as;
1/[A] = kt + 1/[A]o
kt = 1/[A] - 1/[A]o
kt = 1/0.0240 - 1/0.1
kt = 31.67
t = 31.67 / 34.1
t = 0.929s = 0.93s (2 s.f)