Answer:
40.7 kJ
Step-by-step explanation:
The formula for the heat, q, needed to evaporate a liquid is
q = mΔHvap
<em>Data: </em>
m = 180 g
ΔHvap = 2260 J/g
<em>Calculation:
</em>
q = 180 g × 2260 /1
q = 40 700 J = 40.7 kJ
Answer:
Hello There!!
Explanation:
The atom is still 24Na.
hope this helps,have a great day!!
~Pinky~
We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
a) First, to get ΔG°rxn we have to use this formula when:
ΔG° = - RT ㏑ K
when ΔG° is Gibbs free energy
and R is the constant = 8.314 J/mol K
and T is the temperature in Kelvin = 25 °C+ 273 = 298 K
and when K = 4.4 x 10^-2
so, by substitution:
ΔG°= - 8.314 * 298 *㏑(4.4 x 10^-2)
= -7739 J = -7.7 KJ
b) then, to get E° cell for a redox reaction we have to use this formula:
ΔE° Cell = (RT / nF) ㏑K
when R is a constant = 8.314 J/molK
and T is the temperature in Kelvin = 25°C + 273 = 298 K
and n = no.of moles of e- from the balanced redox reaction= 3
and F is Faraday constant = 96485 C/mol
and K = 4.4 x 10^-2
so, by substitution:
∴ ΔE° cell = (8.314 * 298 / 3* 96485) *㏑(4.4 x 10^-2)
= - 2.7 x 10^-2 V
Answer:
theory is diffrent from law
Explanation:
a Theory can never be proven to be true nd a law can usually be expressed