As water is boiled, kinetic energy causes<span> the </span>hydrogen bonds to break<span> completely and allows water molecules to escape into the air as gas (steam or water vapor). When water freezes, water molecules form a crystalline structure maintained by </span>hydrogen bonding<span>. Solid water, or </span>ice<span>, is less dense than liquid water.</span>
The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
There is 1 H atom: (1)(+1) = +1 The oxidation number of O is -2. There are 4 O atoms here: (4)(-2) = -8 So the oxidation state of Cl is +7.
NOTE: The maximum positive oxidation number for chlorine is +7,<span> the same as its group number (VII).</span>
Because the heat of the ocean mixed with the cold air above the ocean causes a hurricane