Answer:
The equation of tangent plane to the hyperboloid
.
Step-by-step explanation:
Given
The equation of ellipsoid

The equation of tangent plane at the point 
( Given)
The equation of hyperboloid

F(x,y,z)=


The equation of tangent plane at point 

The equation of tangent plane to the hyperboloid

The equation of tangent plane

Hence, the required equation of tangent plane to the hyperboloid

The percentage of data that is roughly greater than 66, as displayed in the box plot, is 100%.
<h3>How to Determine a Percentage of a Data Represented in a Box Plot?</h3>
In a box plot, we have the following displayed five-number summary which tells what percentage of the data distribution for each part of the data distribution:
Upper quartile (Q3): This is the value at where the box in the box plot ends at the edge of the box. From this point to the left, all data values that fall within the bracket make up 75% of the data.
Lower quartile (Q3): This is the value at where the box in the box plot starts at the edge of the box. From this point to the left, all data values that fall within the bracket make up 25% of the data.
Median: this is the middle value at the point where the line divides the box and data below this point make up 50% of the data.
The other five-number summary are the maximum and the minimum values that are represented by the whiskers.
On the box plot given, 66 is at the extreme whisker at the left. This means that the percentage of data that is roughly greater than 66 is 100%.
Learn more about the box plot on:
brainly.com/question/14277132
#SPJ1
Answer:
1.38 to the nearest hundredth.
Step-by-step explanation:
Dividing:
x + 1 ) 3x - 1 ( 3
3x + 3
-4
so (3x - 1) / (x + 1) = 3 - 4 / x+ 1
Integral of (3 - 4 / x+1 ) = 3x - 4 ln(x + 1)
Between limits of 1 and 2 we have:
(3(2) - 4 ln 3) - (3 - 4 ln2)
= 1.6056 - 0.2274
= 1.3782.
Answer:
Step-by-step explanation:
The model fo the shell is given by the following equation of equilibrium:

This first-order differential equation has separable variables, which are cleared herein:

The solution of this integral is:
![t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right]](https://tex.z-dn.net/?f=t%20%3D%20-%5Cfrac%7Bm%7D%7B2b%7D%5Ccdot%20%5Cleft%5B%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%20-%20%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%5Cright%5D)

![\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right]](https://tex.z-dn.net/?f=%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%3D%5Ctan%20%5Cleft%5B-%5Cfrac%7B2%5Ccdot%20b%5Ccdot%20t%7D%7Bm%7D%20%2B%20%5Ctan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Cright%5D)
![v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%5Cleft%20%5B%5Cfrac%7B%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%2B%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%7D%7B1%20-%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Ccdot%20%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%20%7D%5Cright%5D)
Answer: 1 5/9 (one and five-ninths)