Answer:
is the question correct, you end up with no X's
3x -4x + x = 9
or I've got it wrong
Choice A is the answer which is the point (1,-1)
=========================================
How I got this answer:
Plug each point into the inequality. If you get a true statement after simplifying, then that point is in the solution set and therefore a solution. Otherwise, it's not a solution.
-------------
checking choice A
plug in (x,y) = (1,-1)



This is true because -3 is equal to itself. So this is the answer.
-------------
checking choice B
plug in (x,y) = (2,4)



This is false because 0 is not to the left of -3, nor is 0 equal to -3. We can cross this off the list.
-------------
checking choice C
plug in (x,y) = (-2,3)



This is false because 7 is not to the left of -3, nor is 7 equal to -3. We can cross this off the list.
-------------
checking choice D
plug in (x,y) = (3,4)



This is false because -2 is not to the left of -3, nor is -2 equal to -3. We can cross this off the list.
The equation in standard form is 2x^2 + 7x - 15=0. Factoring it gives you (2x-3)(x+5)= 0. That's the first one. The second one requires you to now your formula for the axis of symmetry which is x = -b/2a with a and b coming from your quadratic. Your a is -1 and your b is -2, so your axis of symmetry is
x= -(-2)/2(-1) which is x = 2/-2 which is x = -1. That -1 is the x coordinate of the vertex. You could plug that back into the equation and solve it for y, which is the easier way, or you could complete the square on the quadratic...let's plug in x to find y. -(-1)^2 - 2(-1)-1 = 0. So the vertex is (-1, 0). That's the first choice given. For the last one, since it is a negative quadratic it will be a mountain instead of a cup, meaning it doesn't open upwards, it opens downwards. Those quadratics will ALWAYS have a max value as opposed to a min value which occurs with an upwards opening parabola. This one is also the first choice because of the way the equation is written. There is no side to side movement (the lack of parenthesis tells us that) so the x coordinate for the vertex is 0. The -1 tells us that it has moved down from the origin 1 unit; hence the y coordinate is -1. The vertex is a max at (0, -1)
Answer:
2
Step-by-step explanation: