Place the magnet at one end of the piece of metal. The magnet must make as much contact with the metal as possible. Place light pressure on the magnet and rub the metal in one direction only. Magnetization will take some time to accomplish so continue rubbing until the iron or steel attracts other pieces of metal.
Force = -kx
80N=0.15m * -k
K=-80/0.15=533.333. Spring constant
Energy=1/2kx^2
1/2*(-80/0.15)*80^2=Energy
Answer:
ε = 6.617 V
Explanation:
We are given;
Number of turns; N = 40 turns
Diameter;D = 18cm = 0.18m
magnetic field; B = 0.65 T
Time;t = 0.1 s
The formula for the induced electric field(E.M.F) is given by;
ε = |-NAB/t|
A is area
ε is induced electric field
While N,B and t remain as earlier described.
Area = π(d²/4) = π(0.18²/4) = 0.02545
Thus;
ε = |-40 × 0.02545 × 0.65/0.1|
ε = 6.617 V
(we ignore the negative sign because we have to take the absolute value)
ANSWER.no cause they have to be going a the same speed and I doubt that are gonna go at the same speed.
The force acting on the object is constant, so the acceleration of the object is also constant. By definition of average acceleration, this acceleration was
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (6 m/s - 0) / (1.7 s) ≈ 3.52941 m/s²
By Newton's second law, the magnitude of the force <em>F</em> is proportional to the acceleration <em>a</em> according to
<em>F</em> = <em>m a</em>
where <em>m</em> is the object's mass. Solving for <em>m</em> gives
<em>m</em> = <em>F</em> / <em>a</em> = (10 N) / (3.52941 m/s²) ≈ 2.8 kg