Answer:
0 m/sec
Explanation:
b/c they were at rest and initial means at rest ,at rest means 0 HOPE THIS HELPS
Answer:
Take-off velocity = v = 81.39[m/s]
Explanation:
We can calculate the takeoff speed easily, using the following kinematic equation.

where:
a = acceleration = 4[m/s^2]
x = distance = 750[m]
vi = initial velocity = 25 [m/s]
vf = final velocity
![v_{f}=\sqrt{(25)^{2}+(2*4*750) } \\v_{f}=81.39[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D%5Csqrt%7B%2825%29%5E%7B2%7D%2B%282%2A4%2A750%29%20%7D%20%5C%5Cv_%7Bf%7D%3D81.39%5Bm%2Fs%5D)
Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
(1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
Solving for a:

Now with the acceleration we can use the Galileo's kinematic equation:
(2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:

Solving for Vf

