The value of R3 is A) 10 Ω
Answer:
98.13m
Explanation:
Complete question
Daniel is 50.0 meters away from a building. Tip of the building makes an angle of 63.0° with the horizontal. What is the height of the building
CHECK THE ATTACHMENT
From the figure, using trigonometry
Tan(θ ) = opposite/adjacent
Where Angle (θ )= 63°
Opposite= X = height of the building
Adjacent= 50 m
Then substitute the values we have
Tan(63)= X/50
1.9626= X/50
X= 1.9626 × 50
X= 98.13m
Hence, the height of the building is 98.13m
Answer:

Explanation:
The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:


Now, the exerted force is:

The volume of a sphere is:



Lastly, the force is calculated:


Answer:
See the answers below.
Explanation:
We will solve this problem by calculating each part separately.
A 500 W hair dyer is used to dry hair for 6 minutes a day for 3 days.
Energy can be calculated by multiplying the value of the power of the equipment by the amount of time of use.
![500 [W]*[\frac{6min}{1day} ]*[\frac{1day}{24hr} ]*[\frac{1hr}{60min} ]=2.083 [W]](https://tex.z-dn.net/?f=500%20%5BW%5D%2A%5B%5Cfrac%7B6min%7D%7B1day%7D%20%5D%2A%5B%5Cfrac%7B1day%7D%7B24hr%7D%20%5D%2A%5B%5Cfrac%7B1hr%7D%7B60min%7D%20%5D%3D2.083%20%5BW%5D)
The cots of electricity is 5.6 cents per kWh. How much would it cost to operate the laptop for 24 hours a day for one week?
We know that the power of the latop is 75 [W], then we can calculate the cost, multiplying the value of the power by the value of the cost by the time of use of the computer.
![0.075[kW]*5.6[\frac{cents}{kw*h}}]*[\frac{24hr}{1day}]*[1week]*[\frac{7days}{1week} ]=70.56 [cents]](https://tex.z-dn.net/?f=0.075%5BkW%5D%2A5.6%5B%5Cfrac%7Bcents%7D%7Bkw%2Ah%7D%7D%5D%2A%5B%5Cfrac%7B24hr%7D%7B1day%7D%5D%2A%5B1week%5D%2A%5B%5Cfrac%7B7days%7D%7B1week%7D%20%5D%3D70.56%20%5Bcents%5D)
A toaster oven is 85% efficient. It uses 1200 J of energy. How much thermal energy is it producing?
Efficiency is defined as the relationship between the energy obtained on the energy delivered. Almost always the energy delivered is greater than the energy obtained (first law of thermodynamics).
Therefore.
![Effic = E_{obtained}/E_{delivered}\\0.85=E_{obtained}/1200\\E_{obtained}=1020[J]](https://tex.z-dn.net/?f=Effic%20%3D%20E_%7Bobtained%7D%2FE_%7Bdelivered%7D%5C%5C0.85%3DE_%7Bobtained%7D%2F1200%5C%5CE_%7Bobtained%7D%3D1020%5BJ%5D)
Answer:
B = 191.26 cm
θ = -14.73°
Explanation:
given,
magnitude of the first displacement(A) = 146 cm
at an angle of 124°
resultant magnitude = 137 cm
and angle made with x-axis by the resultant(R) = 32.0°
component of A in X and Y direction
A x = A cos θ = 146 cos 120° = -73 cm
A y = A sin θ = 146 sin 120° = 126.4 cm
now component of resultant in x and y direction
R x = 137 cos 35°
= 112.2 cm
R y = 137 sin 35°
= 78.6 cm
resultant is the sum of two vectors
R = A + B
R x = A x + B x
B x = 112.2 - (-73) = 185.2 cm
B y = R y - A y
B y = 78.6 - 126.4 = -47.8 cm
magnitude of B
B = 
B = 
B = 191.26 cm
angle
θ = -14.73°