<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
Answer:
Copper electrical wires are safer to use than wires made of most other conductive metals because they are resistant to heat. As you can see, copper is the preferred metal for electrical wires for several reasons. It has high electrical conductive; it's inexpensive; it's ductile; and it's thermal resistant.
Solutions 1 and 3 because they are strong acids and a strong base. <u>Option A.</u>
<u />
Strong acids and strong bases are completely ionized in an aqueous solution. Weak acids and weak bases also ionize, but only partially and the reaction is reversible. So you know if an acid or base is strong or weak. A simple way to determine strength is to add the acid or base to water. A higher reactivity means a stronger acid or base.
One of the simplest tests to determine whether a solution is an acid or base is the litmus paper test. To do this, dip a special strip of paper so-called litmus paper into the solution and observe the color of the paper. Litmus paper turns red in acidic solutions and blue in basic solutions. Sodium hydroxide is the strongest base because it completely dissociates to form sodium and hydroxide ions. These hydroxide ions are further treated with hydrogen ions by an acid to completely ionize the hydrogen ions.
Learn more about Experiment here:-https://brainly.ph/question/672153
#SPJ1
Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.
I would say B but I am not sure so sorry if it is wrong!!