Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign
The model bridge captures all the structural attributes of the real bridge, at a reduced scale.
Part a.
Note that volume is proportional to the cube of length. Therefore the actual bridge will have 100^3 = 10^6 times the mass of the model bridge.
Because the model bridge weighs 50 N, the real bridge weighs
(50 N)*10^6 = 50 MN.
Part b.
The model bridge matches the structural characteristics of the actual bridge.
Therefore the real bridge will not sag either.
The source of information was biased. It was like walking along a river bank in the country and asking everybody you meet whether they like fishing. Or asking 500 people sitting in the bleachers whether they like baseball.
I'm sure the scientist would have gotten different data if she interviewed 500 teenagers at neighborhood basketball courts, or 500 teenagers at a rock concert.
Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
<span>If the entropy is greater than the enthalpy, it will have more spontinaity</span>