Well, the relationship between the net force and mass and acceleration of an object are directly related, as per the equation - Fnet = ma.
Thus the solution is A. As the net force of an object decreases, the object's acceleration also decreases, mass is kept constant.
Answer: +2.10V
Explanation:

Using Nernst equation :

![E_{cell}=E^o_{cell}-\frac{0.059}{n}\log [Al^{3+}]^2\times [I^-]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.059%7D%7Bn%7D%5Clog%20%5BAl%5E%7B3%2B%7D%5D%5E2%5Ctimes%20%5BI%5E-%5D%5E6)
where,
= standard emf for the cell = +2.20 V
n = number of electrons in oxidation-reduction reaction = 6
= emf of the cell = ?
= concentration = 
= concentration = 
Now put all the given values in the above equation, we get:
![E_{cell}=+2.20-\frac{0.059}{6}\log [5.0\times 10^{-3}]^2\times [0.10]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D%2B2.20-%5Cfrac%7B0.059%7D%7B6%7D%5Clog%20%5B5.0%5Ctimes%2010%5E%7B-3%7D%5D%5E2%5Ctimes%20%5B0.10%5D%5E6)

The standard emf for the cell using the overall cell reaction below is +2.10 V
Answer:



Explanation:
This is the formula for centripetal acceleration in terms of the tangential velocity (v) and the radius of the circular motion (r). The expression for the acceleration is already given, so simply type it as shown:

For the velocity (v) multiply by "r" both sides and then use the square root to solve for v:

For the radius multiply both sides by r and then divide both sides by the acceleration (a) in order to isolate r completely:

Answer:
Explanation:
It is given that,
Mass of lump, m₁ = 0.05 kg
Initial speed of lump, u₁ = 12 m/s
Mass of the cart, m₂ = 0.15 kg
Initial speed of the cart, u₂ = 0
The lump of clay sticks to the cart as it is a case of inelastic collision. Let v is the speed of the cart and the clay after the collision. As the momentum is conserved in inelastic collision. So,



v = 3 m/s
So, the speed of the cart and the clay after the collision is 3 m/s. Hence, this is the required solution.