Gamma radiation could be used to sterilize plastic petri plates in a plastic wrapper.
Answer: Option E
<u>Explanation:
</u>
It is known that radioactive radiations have greater ionizing powers compared to other electromagnetic radiations. Among the radioactive radiations, gamma rays are the most ionizing radiation.
So they are widely used in sterilizing process. As the penetration power of gamma is more compared to alpha and beta, in order to kill microorganisms gamma radiations are used.
When plastic petri plates wrapped with plastic are bombarded or sterilizing with gamma rays, the rays will ionise the micro-organism. Thus mutilating their DNA and preventing their reproduction.
Answer:
While a body is said to be in motion if it changes its position with respect to immediate surroundings.
A body is said to be in uniform motion if it covers equal distances in equal interval of time.
A body is said to be in non-uniform motion if it covers unequal distances in equal interval of time or vice-versa
Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
Answer:

Explanation:
By Snell's law we know at the left surface




now we have


now on the other surface we know that
angle of incidence = 

so again we have

so we have


also we know that


By solving above equation we have

Answer:
(a) The ratio of the pressure amplitude of the waves is 43.21
(b) The ratio of the intensities of the waves is 0.000535
Explanation:
Given;
density of gas,
= 2.27 kg/m³
density of liquid,
= 972 kg/m³
speed of sound in gas,
= 376 m/s
speed of sound in liquid,
= 1640 m/s
The of the sound wave is given by;

Where;
is the pressure amplitude

(b) when the pressure amplitudes are equal, the ratio of the intensities is given as;
