Answer:
See explanation
Explanation:
We have a mass
revolving around an axis with an angular speed
, the distance from the axis is
. We are given:
![\omega = 10 [rad/s]\\r=0.5 [m]\\m=13[Kg]](https://tex.z-dn.net/?f=%5Comega%20%3D%2010%20%5Brad%2Fs%5D%5C%5Cr%3D0.5%20%5Bm%5D%5C%5Cm%3D13%5BKg%5D)
and also the formula which states that the kinetic rotational energy of a body is:
.
Now we use the kinetic energy formula

where
is the tangential velocity of the particle. Tangential velocity is related to angular velocity by:

After replacing in the previous equation we get:

now we have the following:

therefore:

then the moment of inertia will be:
![I = 13*(0.5)^2=3.25 [Kg*m^2]](https://tex.z-dn.net/?f=I%20%3D%2013%2A%280.5%29%5E2%3D3.25%20%5BKg%2Am%5E2%5D)
Answer:
+9.8m/s^2
Explanation:
The rate of gravity of the object is constant thriughout the surface of the earth.
For falling object, the rate of gravity is positive since the body is coming down (falling)
The rate of gravity is negative if the body is going up
The constant value for acceleration due to gravity is 9.8m.s^2
Since the object is falling, hence the acceleration due to gravity is positive.
Rate of gravity working on the object will be +9.8m/s^2
Answer: D. Infrared
Infrared is the best way to observe it.
The answer to this statement is true!