To get the charge along the inner cylinder, we use Gauss Law
E = d R1/2εo
For the outer cylinder the charge can be calculated using
E = d R2^2/2εoR1
where d is the charge density
Use these two equations to get the charge in between the cylinders and the capacitance between them.
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
Answer:
Container A and C
Explanation:
ideal gas equation gives P=nRT/V
so at constant Temperature and pressure, P=n/T
Container A and C after dividing number of moles and Volume, are found to be the same=0.0446