1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
13

Determine the gain in the potential energy when a 8.0 kg box is raised 17.2 m.

Physics
2 answers:
Marysya12 [62]3 years ago
6 0

Answer:

<h2>The answer is 1376 J</h2>

Explanation:

The potential energy of a body can be found by using the formula

PE = mgh

where

m is the mass

h is the height

g is the acceleration due to gravity which is 10 m/s²

From the question we have

PE = 8 × 10 × 17.2

We have the final answer as

<h3>1376 J</h3>

Hope this helps you

Mekhanik [1.2K]3 years ago
6 0

Explanation:

potential energy = mgh

potential energy = 8 * 10 * 17.2

potential energy = 1376 joules

You might be interested in
A point charge of 6.0 nC is placed at the center of a hollow spherical conductor (inner radius = 1.0 cm, outer radius = 2.0 cm)
egoroff_w [7]

Explanation:

The given data is as follows.

             q = 6.0 nC = 6 \times 10^{-9} C

         inner radius (r) = 1.0 cm = 0.01 m   (as 1 cm = 100 m)

So, there will be same charge on the inner surface as the charge enclosed with an opposite sign.

Formula to calculate the charge density is as follows.

            \sigma = \frac{q_{in}}{A} .......... (1)

Since, area of the sphere is as follows.

               A = 4 \pi r^{2} ........... (2)

Hence, substituting equation (2) in equation (1) as follows.

      \sigma = \frac{q_{in}}{4 \pi r^{2}}

                   = \frac{6 \times 10^{-9} C}{4 \times 3.14 \times (0.01)^{2}}            

                   = 0.477 \times 10^{-5}

or,               = 4.77 \mu C/m^{2}

Thus, we can conclude that the resulting charge density on the inner surface of the conducting sphere is 4.77 \mu C/m^{2}.

5 0
3 years ago
An experimental apparatus has two parallel horizontal metal rails separated by 1.0 m. A 3.0 Ω resistor is connected from the lef
Blizzard [7]

Answer:

The induced current and the power dissipated through the resistor are 0.5 mA and 7.5\times10^{-7}\ Watt.

Explanation:

Given that,

Distance = 1.0 m

Resistance = 3.0 Ω

Speed = 35 m/s

Angle = 53°

Magnetic field B=5.0\times10^{-5}\ T

(a). We need to calculate the induced emf

Using formula of emf

E = Blv\sin\theta

Where, B = magnetic field

l = length

v = velocity

Put the value into the formula

E=5.0\times10^{-5}\times1.0\times35\sin53^{\circ}

E=1.398\times10^{-3}\ V

We need to calculate the induced current

E =IR

I=\dfrac{E}{R}

Put the value into the formula

I=\dfrac{1.398\times10^{-3}}{3.0}

I=0.5\ mA

(b). We need to calculate the power dissipated through the resistor

Using formula of power

P=I^2 R

Put the value into the formula

P=(0.5\times10^{-3})^2\times3.0

P=7.5\times10^{-7}\ Watt

Hence, The induced current and the power dissipated through the resistor are 0.5 mA and 7.5\times10^{-7}\ Watt.

6 0
3 years ago
Read 2 more answers
What is the average speed of a train that travels at 100km/hr for 6 hours and then 120km/hr for 5 hours
Sindrei [870]

Answer:

Explanation:

Average speed = Total distance / Total time.

100 km/hr

r = 100 km / hr

t = 6 hours

d = 6 * 100 = 600 km

120 km / hr

r = 120 km / hr

t = 5 hour

d = 120 * 5

d = 600 km

Total distance = 600 + 600 = 1200 km

Total time = 5 hour + 6 hours = 11 hours.

Average speed = 1200 km / 11 hours = 109.1

5 0
3 years ago
A parachutist of mass 100 kg falls from a height of 500 m. Under realistic conditions, she experiences air resistance. Based on
antoniya [11.8K]
Given:
mass: 100 kg
height: 500 m
1 kJ = 1000 J
gravity = 9.8 m/s²

velocity before impact: v = √2gh ; v = √2 * 9.8 m/s² * 500 m ; v = 98.99494 m/s

KE = 1/2 m v²
KE = 1/2 * 100 kg * (98.99494 m/s)²
KE = 490,000 J

Pls. see attachment. 

  

5 0
3 years ago
Read 2 more answers
Calculate the maximum capillary rise/fall of mercury in a 0.5 mm radius glass capillary. Assume that the surface tension for mer
tekilochka [14]

Answer: 0.01 m

Explanation: The formulae for capillarity rise or fall is given below as

h = (2T×cosθ)/rpg

Where θ = angle mercury made with glass = 50°

T = surface tension = 0.51 N/m

g = acceleration due gravity = 9.8 m/s²

r = radius of tube = 0.5mm = 0.0005m

p = density of mercury.

h = height of rise or fall

From the question, specific gravity of density = 13.3

Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³

Hence density of mercury = 13.3×1000 = 13,300 kg/m³.

By substituting parameters, we have that

h = 2×0.51×cos 50/0.0005×9.8×13,300

h = 0.6556/65.17

h = 0.01 m

8 0
3 years ago
Other questions:
  • Calculate the average speed of an automobile that travels 60km east and then 80km north in two hours
    9·1 answer
  • If the diameter of the red marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume? cm
    14·1 answer
  • What is the speed of the 5 states of matter?
    7·1 answer
  • A force is directly proportional to what ?
    7·1 answer
  • A 600kg car is at rest , and then accelerates to 5n/s what is the original kinetic energy?
    9·1 answer
  • Vector A has a magnitude of 6.0 m and points 30° north of east. Vector B has a magnitude of 4.0 m and points 30° west of south.
    13·1 answer
  • The Milky Way and the Andromeda are both________.
    13·1 answer
  • jaka siła pełni rolę siły dośrodkowej w przypadku krzesełka kręcocego się na karuzeli przy akrobacji lotniczych
    13·1 answer
  • joe spend 8 on lunch and 6.50 on dry cleaning . He also buys 2 shirts that each cost the same smount. joe spend a total of $52 w
    14·1 answer
  • If Emily tries to jump over a narrow river at the speed of 6 m/s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!