Answer:
the ball travelled approximately 60 m towards north before stopping
Explanation:
Given the data in the question;
First course :
= 0.75 m/s²,
= 20 m,
= 10 m/s
now, form the third equation of motion;
v² = u² + 2as
we substitute
² = (10)² + (2 × 0.75 × 20)
² = 100 + 30
² = 130
= √130
= 11.4 m/s
for the Second Course:
= 11.4 m/s,
= -1.15 m/s²,
= 0
Also, form the third equation of motion;
v² = u² + 2as
we substitute
0² = (11.4)² + (2 × (-1.15) ×
)
0 = 129.96 - 2.3
2.3
= 129.96
= 129.96 / 2.3
= 56.5 m
so;
|d| = √(
² +
² )
we substitute
|d| = √( (20)² + (56.5)² )
|d| = √( 400 + 3192.25 )
|d| = √( 3592.25 )
|d| = 59.9 m ≈ 60 m
Therefore, the ball travelled approximately 60 m towards north before stopping
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
Answer:
The evidence is conclusive; aggression and violence in the media lead to aggression and violence in the general population.
Explanation:
good luck