More force is needed for more mass. Therefore, if the mass is greater and the force is not enough then the object will less likely accelerate
Answer is D. Neutral charge
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
<h2>
Answer:</h2>
-310J
<h2>
Explanation:</h2>
The change in internal energy (ΔE) of a system is the sum of the heat (Q) and work (W) done on or by the system. i.e
ΔE = Q + W ----------------------(i)
If heat is released by the system, Q is negative. Else it is positive.
If work is done on the system, W is positive. Else it is negative.
<em>In this case, the system is the balloon and;</em>
Q = -0.659kJ = -695J [Q is negative because heat is removed from the system(balloon)]
W = +385J [W is positive because work is done on the system (balloon)]
<em>Substitute these values into equation (i) as follows;</em>
ΔE = -695 + 385
ΔE = -310J
Therefore, the change in internal energy is -310J
<em>PS: The negative value indicates that the system(balloon) has lost energy to its surrounding, thereby making the process exothermic.</em>
<em />
<em />