Its actually C. I did the question on USA test prep and it said the correct answer was C.
The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.
To represent in order how the animals
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
Answer:
amount of work done, W = 549.36 kJ
Given:
mass of a car engine, m = 2500 kg
initial velocity, u = 45 mph
final velocity, v = 65 mph
1 mile = 1609
Solution:
We know that 1 hour = 3600 s
Now, velocities in m/s are given as:
u = 45 mph =
= 20.11 m/s
v = 65 mph =
= 29.05 m/s
Now, the amount of work done, W is given by the change in kinetic energy of the car and is given by:
W = 
W = 
W = 
W = 549.36 kJ