1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
3 years ago
7

A force is directly proportional to what ?

Physics
1 answer:
pishuonlain [190]3 years ago
4 0
It's mass and acceleration
You might be interested in
A heat engine accepts 200,000 Btu of heat from a source at 1500 R and rejects 100,000 Btu of heat to a sink at 600 R. Calculate
diamong [38]

To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.

By definition we know that the change in entropy is given by

\Delta S = \frac{Q}{T}

Where,

Q = Heat transfer

T = Temperature

On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

W = Q_{source}-Q_{sink}

According to the data given we have to,

Q_{source} = 200000Btu

T_{source} = 1500R

Q_{sink} = 100000Btu

T_{sink} = 600R

PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is

\Delta S_{sink} = \frac{Q_{sink}}{T_{sink}}

\Delta S_{sink} = \frac{100000}{600}

\Delta S_{sink} = 166.67Btu/R

On the other hand,

\Delta S_{source} = \frac{Q_{source}}{T_{source}}

\Delta S_{source} = \frac{-200000}{1500}

\Delta S_{source} = -133.33Btu/R

The total change of entropy would be,

S = \Delta S_{source}+\Delta S_{sink}

S = -133.33+166.67

S = 33.34Btu/R

Since S\neq   0 the heat engine is not reversible.

PART B)

Work done by heat engine is given by

W=Q_{source}-Q_{sink}

W = 200000-100000

W = 100000 Btu

Therefore the work in the system is 100000Btu

4 0
3 years ago
How do you convert mass to weight and visa versa
Darina [25.2K]
To change from mass to weight is Fw = 30 kg * 9.8 m/s^2 = 294 N. To change from weight to mass divide by gravity (9.8 m/s^2).
6 0
3 years ago
Read 2 more answers
To calibrate the calorimeter electrically, a constant voltage of 3.6 V is applied and a current of 2.6 A flows for a period of 3
iren [92.7K]

Answer:

372.3 J/^{\circ}C

Explanation:

First of all, we need to calculate the total energy supplied to the calorimeter.

We know that:

V = 3.6 V is the voltage applied

I = 2.6 A is the current

So, the power delivered is

P=VI=(3.6)(2.6)=9.36 W

Then, this power is delivered for a time of

t = 350 s

Therefore, the energy supplied is

E=Pt=(9.36)(350)=3276 J

Finally, the change in temperature of an object is related to the energy supplied by

E=C\Delta T

where in this problem:

E = 3276 J is the energy supplied

C is the heat capacity of the object

\Delta T =29.1^{\circ}-20.3^{\circ}=8.8^{\circ}C is the change in temperature

Solving for C, we find:

C=\frac{E}{\Delta T}=\frac{3276}{8.8}=372.3 J/^{\circ}C

5 0
3 years ago
A generator produces 60 A of current at 120 V. The voltage is usually stepped up to 4500 V by a transformer and transmitted thro
aalyn [17]

Answer:

The percentage power lost in the transmission line if the voltage not stepped up is 50%.

Explanation:

Given that,

Current = 60 A

Voltage = 120 V

Resistance = 1.0 ohm

We need to calculate the power

Using formula of power

P=I\times V

Where,I =current

V = voltage

Put the value into the formula

P=60\times120

P=7200\ W

We need to calculate the percentage power lost in the transmission line

If the voltage is not stepped up

Then, the power loss

P'=I^2\times R

Put the value into the formula

P'=(60)^2\times1

P'=3600\ W

The percentage power loss P''

P''=\dfrac{P'}{P}\times100=\dfrac{3600}{7200}\times100

P''=50\%

Hence, The percentage power lost in the transmission line if the voltage not stepped up is 50%.

5 0
3 years ago
Un avión de rescate en Alaska deja caer un paquete de provisiones a un grupo de exploradores extraviados. Si el avión viaja hori
posledela

Answer:

180.4 m

Explanation:

The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:    

$V_{ox}=v_x = 40 \ m/s$

   h = 100 m  

    x =?

     Height formula h:

     $h=g \times \frac{t^2}{2}$

      Time t is cleared:

     $t = \sqrt{\frac{2h}{g}}$

      $t = \sqrt{\frac{2 \times 100}{9.8}}$

      t = 4.51 sec

 Horizontal distance formula x:

       $x=V_x \times t$

        x = 40 m / sec x 4.51 sec

        x = 180.4 m

4 0
3 years ago
Other questions:
  • A motorcycle travels 889 meters in 15 seconds. What is its average speed?______m/s
    14·2 answers
  • If you see lightening bolt and count for 4 seconds before you hear the thunder how far away was the lightening strike ? It was n
    5·1 answer
  • If you attach a 50.0 g mass to the spring whose data are shown in the graph, what will be the period of its oscillations?
    10·1 answer
  • Cheryl has a mug that she says is made up of matter. Heather says that the hot chocolate inside the cup is made up of matter, to
    6·1 answer
  • a fluid in equilibrium within a vessel exerts pressure intensity to all parts of the fluid, according to _____ principle
    6·1 answer
  • A parallel plate capacitor is attached to a battery to create a potential difference of 12V The battery is then disconnected and
    7·1 answer
  • What decibel reading corresponds to a pressure amplitude of 0.2 W/m^2?
    5·1 answer
  • In a building with 10.000 cubic feet where the air changes every two hours, what the rate of air change? A. 167.7 cfm B. 83.3 cf
    15·2 answers
  • If you remove large amounts of heat from a liquid, what could happen
    13·1 answer
  • Average wavelength of radio waves​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!