We can solve the equation and show the solution below:
Oxygen atomic number is 16.
Phosphorus atomic number is 32.
We have the molecular weight:
Molecular weight = (31*4) + (16*10)
Molecular weight = 284 grams/mol
Solving for the grams:
0.4 mole (for P4) * (1 mol P4O10/1 mol P4) * (284 grams P4O10/1 mole P4O10)
Total grams = 113.6
The answer is 113.6 grams.
Answer: pH = 4.996
Explanation:
No of moles = molarity x volume
:• no of moles of CH3COOH = 0.1M x 0.1L
n(CH3COOH) = 0.1mol
Since 0.03mole of NaOH is added, then 0.03 mole of CH3COOH will be converted to the conjugate.
Therefore, Moles of CH3COOH becomes,
0.1 - 0.03 = 0.07 mol
Subsequently, the moles of CH3COONa increases and becomes,
0.08 + 0.03 = 0.11 mol
Using the Hendersom-Hasselbach equation,
pH = pKa + log [Moles of conjugate÷ moles of Ch3COOH]
From literature, pKa of Ch3COOH is 4.8
Thus,
pH = 4.8 + log [0.11/0.07]
pH = 4.8 + 0.1963
pH = 4.996
Answer:
The chemistry will need 2*10⁶ moles of antimony trifluoride.
Explanation:
The balanced reaction is:
3 CCl₄ (g) + 2 SbF₃ (s) → 3 CCl₂F₂(g) + 2 SbCl₃ (s)
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- CCl₄: 3 moles
- SbF₃: 2 moles
- CCl₂F₂: 3 moles
- SbCl₃: 2 moles
You can apply the following rule of three: if by reaction stoichiometry 3 moles of freon are produced by 2 moles of antimony trifluoride, 3*10⁶ moles of Freon are produced from how many moles of antimony trifluoride?

moles of antimony trifluoride= 2*10⁶
<u><em>The chemistry will need 2*10⁶ moles of antimony trifluoride.</em></u>
Answer:
10 L
Explanation:
The only variables are pressure and volume, so we can use Boyle's Law:
p1V1 = p2V2
Data:
p1 = 125 atm; V1 = 4.0 L
p2 = 50 atm; V2 = ?
Calculation:
125 × 4.0 = 50V2
500 = 50 V2
V2 = 500/50 = 10 L
The new volume will be 10 L.
Answer:
Krypton has 4 orbital shells
<u>Extra Information:</u>
<em>Krypton has 36 electrons which are arranged in these 4 orbit shells, </em>
<em>The order in which electrons are arranged in these shells is 2,8,18,8</em>