<span>You can answer this question by getting the atomic number and atomic mass of Oxygen from a periodic table. There you will find that the atomic number is 8, that means, by definition, that it has 8 protons. This is, because atomic number is defined as the number of protons of an element. Given that the atom is neutral, that implies that the atoms have the same number of electrons than protons. So you already know that the oxygen atoms has 8 protons and 8 electrons. The number of neutrons can vary, which is what defines the isotopes. Given that the atomic mass of oxygen is 15.999, that means that most atoms of oxygen has 8 neutrons (8 protons +8 neutrons = 16 atomic mass). But you can not be sure that a specific atom of oxygen has 8 neutrons, nevertheless, given that the other options are discarded (because they do not have 8 protons and 8 electrons), the only correct answer is the option A. 8 protons, 8 electrons, and 8 neutrons.</span>
Answer:
Roman numbers are oxidation state of the metals
Because some elements of metals show more than one oxidation state like iron Fe2+ in ferrous and Fe3+ in ferric.
Explanation:
Energy diagrams are use to depict the energy changes that occur during a chemical reaction. There are two types of reaction based on the energy change, these are exothermic and endothermic reactions. In endothermic reactions energy are gained while in exothermic reactions energy are lost to the environment. To identify an exothermic reaction on a potential energy diagram, one has to compare the potential energy of the reactants and the products. If the potential energy of the product is less than that of the reactants, the reaction is exothermic.
Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C