1 molecule of glucose contains 6 atoms of C, 12 atoms of H , and 6 atoms of 0.1 mole of glucose contains 6 moles of C atoms , 12 moles of H atoms , and 6 moles of O atoms .
Answer:
See Explanation
Explanation:

Hence the mass defect is;
[235.04393 + 1.00867] - [ 136.92532 + 96.91095 + 2(1.00867)]
= 236.0526 - 235.85361
= 0.19899 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.19899 amu = 0.19899 * 1.66 * 10^-27 = 3.3 * 10^-28 Kg
Binding energy = Δmc^2
Binding energy = 3.3 * 10^-28 Kg * (3 * 10^8)^2 = 2.97 * 10^-11 J
ii) 
Hence the mass defect is;
[10.01294 + 1.00867] - [7.01600 + 4.00260]
= 11.02161 - 11.0186
= 0.00301 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.00301 amu = 0.00301 * 1.66 * 10^-27 = 4.997 * 10^-30 Kg
Binding energy = Δmc^2
Binding energy = 4.997 * 10^-30 Kg * (3 * 10^8)^2 = 4.5 * 10^-13 J
<span>There is only one formula to use and we should assume ideal gas. This equation is: PV=nRT. For the following questions manipulate this equation to get the answer.
1. n = PV/RT = (249*1000 Pa)(15.6 L)(1 m^3/1000 L)/(8.314 Pa-m^3/mol-K))(21+273) = 1.59 mol
2. P = nRT/V = (1.59)(8.314)(51+273)/(15.6/1000)(1000) = 274.55 kPa
3. Since the answer in #2 is more than 269 kPa, then the tires will likely burst.
4. Reduce pressure way below the limit 269 kPa.</span>
Answer:
Chopping wood logs
A pot of water o a grate over a burning fire
Explanation:
Physical change is easily reversible. Burning/combustion is a chemical process where substances react rapidly with oxygen: this is usually irreversible.
The marshmallow, roasted food and burned wood all undergo combustion and hence are tagged chemical changes.
Explanation: