Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
<span>Examples of outside forces acting on a car is gravity, wind, and other cars. Cars do not slide down hills because their weight, combined with the friction of their tires against the road, hold them in place. </span>
Answer:
It is another machine that helps the main machine. Hope that helps!
Answer: drying towels at the beach.
Explanation:
Radiation simply has to do with the energy that is gotten from a particular source and then goes through some materials. It simply means the way energy is being transmitted as waves or heat through a certain medium.
From the options given, the scenario whereby a radiation takes place is when drying towels on the beach.