To calculate force, use the formula force equals mass times acceleration, or F = m × a. Make sure that the mass measurement you're using is in kilograms and the acceleration is in meters over seconds squared. When you've solved the equation, the force will be measured in Newtons.
Answer:
(a) 4.21 m/s
(b) 24.9 N
Explanation:
(a) Draw a free body diagram of the object when it is at the bottom of the circle. There are two forces on the object: tension force T pulling up and weight force mg pulling down.
Sum the forces in the radial (+y) direction:
∑F = ma
T − mg = m v² / r
v = √(r (T − mg) / m)
v = √(0.676 m (54.7 N − 1.52 kg × 9.8 m/s²) / 1.52 kg)
v = 4.21 m/s
(b) Draw a free body diagram of the object when it is at the top of the circle. There are two forces on the object: tension force T pulling down and weight force mg pulling down.
Sum the forces in the radial (-y) direction:
∑F = ma
T + mg = m v² / r
T = m v² / r − mg
T = (1.52 kg) (4.21 m/s)² / (0.676 m) − (1.52 kg) (9.8 m/s²)
T = 24.9 N
Answer:
eksqijakojqnozjzbw.wlisjaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Explanation:
Answer:
The spring was compressed the following amount:

Explanation:
Use conservation of energy between initial and final state, considering that the surface id frictionless, and there is no loss in thermal energy due to friction. the total initial energy is the potential energy of the compressed spring (by an amount
), and the total final energy is the addition of the kinetic energies of both masses:



Answer:
m = 1.5 kg
Explanation:
Data:
- Aceleration (a) = 8 m/s²
- Force (F) = 12 N
- Mass (m) = ?
Use formula:
Replace in the formula:
Equate the newtons:
Simplify m/s²:
It divides:
What is the mass of the train?
The mass of the train is <u>1.5 kilograms.</u>