1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
densk [106]
3 years ago
15

A boy can swim 3.0 meter a second in still water while trying to swim directly across a river from west to east, he is pulled by

a current flowing southward at 2.0 meter a second if he ended up exactly across the stream from where he began at what angel to the shore must he swim upstream
Physics
1 answer:
lana66690 [7]3 years ago
8 0

Answer:

Angle: 48.19^o

Explanation:

<u>Two-Dimension Motion</u>

When the object is moving in one plane, the velocity, acceleration, and displacement are vectors. Apart from the magnitudes, we also need to find the direction, often expressed as an angle respect to some reference.

Our boy can swim at 3 m/s from west to east in still water and the river he's attempting to cross interacts with him at 2 m/s southwards. The boy will move east and south and will reach the other shore at a certain distance to the south from where he started. It happens because there is a vertical component of his velocity that is not compensated.

To compensate for the vertical component of the boy's speed, he only has to swim at a certain angle east of the north (respect to the shoreline). The goal is to make the boy's y component of his velocity equal to the velocity of the river. The vertical component of the boy's velocity is

v_b\ cos\alpha

where v_b is the speed of the boy in still water and \alpha is the angle respect to the shoreline. If the river flows at speed v_s, we now set

v_b\ cos\alpha=v_s

\displaystyle cos\alpha=\frac{v_s}{v_b}=\frac{2}{3}

\alpha=48.19^o

You might be interested in
Enunciado del ejercicio n° 1
hoa [83]

Answer:

34

Explanation:

6 0
3 years ago
Which of the following is group 1? a. alkali metals b. alkaline earth metals c. halogens d. transition metals
Elanso [62]
The answer is A. Alkali metals
4 0
4 years ago
Read 2 more answers
A solid is stirred into a liquid and dissolves. Which type of mixture forms?
AVprozaik [17]
The type of mixture that is formed when a solid is stirred into a liquid and dissolves is called suspension. The particles involved or being mixed in this type of mixture is large enough that can be seen by the naked eye without the aid of any device. A suspension mixture has a heterogeneous mixture.
5 0
3 years ago
Read 2 more answers
In which state of matter are particles held together but still able to move around
Aloiza [94]
The answer is B because the water molecules
5 0
3 years ago
Read 2 more answers
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Other questions:
  • If Joe rides his bicycle in a straight line for 15 min with an average velocity of 12.5 km/h south, how far has he ridden?.
    9·2 answers
  • A lever and fulcrum are used to lift a fallen tree, which has a weight of 480N. if the lever has a mechanical advantage of 5.5,
    5·1 answer
  • The velocity of a boat with respect to the shore is 2 meters/second. The velocity of the water with respect to the shore is 1 me
    5·2 answers
  • On land, coal is transported primarily by train. A typical large coal train may be about 1.5 km long and may consist of 120 cars
    11·1 answer
  • An airplane flies horizontally with a constant speed of 155.0 m/s at an unknown altitude. A package is released out of the airpl
    15·1 answer
  • 1. Given a list of atomic model descriptions:
    15·1 answer
  • A force of attraction that exists between any two objects is _______. (1 point)
    8·1 answer
  • HELP! Ammeters are placed on each branch of a parallel circuit. How will their readings compare?
    14·1 answer
  • the atomic number of uranium-235 is 92, its half-life is 704 million years, and the radioactive decay of 1 kg of 235u releases 6
    11·1 answer
  • The same girl in number 3 (above) pushes another friend on the same skateboard.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!