Answer:
Equation of Reaction
2AgNO3 + BaCl2 === 2AgCl + Ba(NO3)2
Molar Mass of AgNO3 = 170g/mol
Moles of reacting AgNO3 = 100g/170gmol-¹
=0.588moles of AgNO3
From the equation of reaction...2moles of AgNO3 reacts to Produce 2Moles of Silver Chloride
So Their ratio is 2:2.
This means that 0.588Moles of AgCl Will be produced too.
ANSWER...0.588MOLES OF AgCl WILL BE PRODUCED.
Moles= mass divided by molar mass
Molar mass= 12.01(4) + 1.01(10)
= 58.14g/mol
Moles=14.5g / 58.14g/mol
=0.249
Therefore there are approx 0.249 moles in a 14.5g sample of C4H10
Answer:
How many grams of H2O are in 1.0 mole of H2O?
18.02 grams
The average mass of one H2O molecule is 18.02 amu. The number of atoms is an exact number, the number of mole is an exact number; they do not affect the number of significant figures. The average mass of one mole of H2O is 18.02 grams.
#Yourchuu
Answer:
6.022 × 10²² atoms
Explanation:
Generally 1 mol of any element contains 6.02×10^23 atoms. The number 6.022 × 10²³ is known as Avogadro's number.
Mass of Aluminium = 2.70g
Molar mass = 27g/mol
Number of moles = Mass / Molar mass = 2.70 / 27 = 0.1 mol
1 mol = 6.022 × 10²³
0.1 mol = x
x = 6.022 × 10²³ * 0.1 = 6.022 × 10²² atoms
<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>