Height of wave - amplitude
Higher the pitch - higher the frequency
Louder - higher the amplitude
bottom of the wave - trough
distance from crest to crest - wave length
top of the wave - crest
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer:

Explanation:
Given that,
The distance between the centers of the two oxygen atoms in an oxygen molecule is
.
We need to convert this distance in inches.
We know that,
1 cm = 0.393 inches
We can solve it as follows :

So, the distance between the centers of the two oxygen atoms is
.
Group 1 and group 7 of element group consists of alkali metal, which are generally combined with other elements in nature, so they have properties of compound