Answer: The entropy change of the surroundings will be -17.7 J/K mol.
Explanation: The enthalpy of vapourization for 1 mole of acetone is 31.3 kJ/mol
Amount of Acetone given = 10.8 g
Number of moles is calculated by using the formula:

Molar mass of acetone = 58 g/mol
Number of moles = 
If 1 mole of acetone has 32.3 kJ/mol of enthalpy, then
0.1862 moles will have = 
To calculate the entropy change for the system, we use the formula:

Temperature = 56.2°C = (273 + 56.2)K = 329.2K
Putting values in above equation, we get
(Conversion Factor: 1 kJ = 1000J)
At Boiling point, the liquid phase and gaseous phase of acetone are in equilibrium. Hence,


Answer:
Metals are thermal conductor.
Answer:
7 and 11
Explanation:
The amount of sand on the beaches can be found using this formula:
volume (m3) = length (m) × width (m) × depth (m)
(6 × 108 m) × 60 m × 20 m = 7 × 1011 m3
Therefore, there would be a total of 7 × 1011 cubic meters of sand on the beaches.
<u>Answer:</u> The solubility of
in water is 
<u>Explanation:</u>
The balanced equilibrium reaction for the ionization of cadmium phosphate follows:

3s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Cd^{2+}]^3[PO_4^{3-}]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the solubility of
in water is 
Answer:
172.385 g/mol
Explanation:
Magnesium Tartrate is C4H4MgO6
C - 12.01 g/mol
H - 1.01 g/mol
Mg - 24.305 g/mol
O - 16.00 g/mol
12.01(4) + 1.01(4) + 24.305 + 16(6) = 172.385 g/mol