Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power

Answer:
Explanation:
Assuming no friction between the roller coaster car and the hill, and neglecting air resistance, the kinetic energy the roller coaster car would have at the bottom of the hill would be equal to its gravitational potential energy at the top of the hill, by conservation of energy.
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
Answer:
v = 23.66 m/s
Explanation:
recall that one of the equations of motion may be expressed:
v² = u² + 2as,
Where
v = final velocity (we are asked to find this)
u = initial velocity = 0 m/s since we are told that it starts from rest
a = acceleration = 0.56m/s²
s = distance traveled = given as 500m
Simply substitute the known values into the equation:
v² = u² + 2as
v² = 0 + 2(0.56)(500)
v² = 560
v = √560
v = 23.66 m/s