1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
2 years ago
10

PHYSICS 50 POINTS PLEASE HELP

Physics
2 answers:
babymother [125]2 years ago
7 0

Newton’s First Law of Motion - if an object is at rest, it takes un-

balanced forces to make it move. Conversely, if an object is moving

it takes an unbalanced force to make it change it’s direction or speed.

Newton was the first to see that such apparently diverse phenomena as a satellite moving near the Earth's surface and the planets orbiting the Sun operate by the same principle: Force equals mass multiplied by acceleration, or F=ma.

zaharov [31]2 years ago
4 0

Answer:

<em>PLEASE HELP</em>

HA

Explanation:

You might be interested in
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
rjkz [21]

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

3 0
3 years ago
Read 2 more answers
If there are two photons with different energies, the one that has a higher energy (a) has the higher frequency (b) has the high
kozerog [31]

Answer:

(a) has the highest frequency

Explanation:

E = hf...where E(is the energy of a photon);h(is the planck's constant) and f is the frequency of the photon

Whereby this formula shows us that energy of a photon is directly proportional to its frequency

So hence if the energy is high then the frequency of the photon is also high

3 0
3 years ago
A snail moves 40 cm in<br> 20 seconds. How fast<br> did it move?
nasty-shy [4]

Answer:

too fast to be a snail

......

2 cm per second

5 0
3 years ago
If you jumped out of a plane, you would begin speeding up as you fall downward. Eventually, due to wind resistance, your velocit
MrRa [10]

Answer:

Mg or your weight.

Explanation:

When your velocity is constant, the net force acting on you is 0. That means the upwards force of air resistance must fully balance the downwards force of gravity on you, which is Mg.

5 0
3 years ago
What is a nebula? <br> please help I am clueless
Rainbow [258]
A nebula is gas, dust, and other things that form and form some sort of clould like thing. It also looks cool because of the colors it produces. I'm sure you could do a web search to find more about it, I don't take astronomy hahaha
4 0
3 years ago
Other questions:
  • Reading Check Explain the relationship between pressure and volume.
    7·1 answer
  • A 60.0 kg astronaut is on a space walk away from the shuttle when her tether line breaks! She is able to throw her 10.0 kg oxyge
    13·1 answer
  • Which species below is an ionic compound?<br> A) NaF <br> B) CO2 <br> C) AlAs <br> D) OF2
    7·2 answers
  • The thermal energy of a system is the ____________ kinetic energy of its particles.
    11·1 answer
  • Water, H2O, is a molecule made of oxygen and hydrogen. The bonds that hold water molecules together are due to shared electrons,
    5·1 answer
  • Ehren is trying to increase his mile run from eight to six minutes. He has decided to run some sandy hills near his home. Which
    9·1 answer
  • Glycerin at 30°C has a density of 1,260 kg/m3 and a viscosity of 0.630 Pa s. In a laboratory experiment, some glycerin is forced
    12·1 answer
  • A sports car accelerates at a constant rate from rest to a speed of 90 km/hr in 8 s. What is its acceleration?
    9·1 answer
  • What is the velocity?
    7·1 answer
  • The momentum of a 3000 kg truck is 6.36 x 104 kg·m/s. At what speed is the truck traveling? m/s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!