Molar mass is the mass of each element multiplied by subscript, then added together.
So, we’ll do
C = 12g x 12 = 144 g
H = 1g x 22 = 22 g
O = 16g x 11 = 176 g
The total of all of these is the molar mass: 342 g in a mol
The amount of mols of each element in each compound is likely equal to its subscripts.
C = 12 mols
H = 22 mols
O = 11 mols
For the atoms, you’ll multiply each one of the above by Avogadro’s number
Avogadro’s Number: 6.02 x 10^23 atoms/mol
Answer:
615 g
Explanation:
In order to convert from moles of any given substance into grams, we have to use said substance's <em>molar mass</em>, as follows:
- # moles * Molar mass = grams of substance.
Thus, we now <u>calculate the molar mass of beryllium iodide</u>, BeI₂, using the <em>molar masses of the elements</em>:
- Molar Mass of BeI₂ = Molar Mass of Be + (Molar Mass of I)*2 = 262.821 g/mol
Finally we <u>calculate how many grams are there in 2.34 moles of BeI₂</u>:
- 2.34 mol * 262.821 g/mol = 615 g
Answer:
37.5 g NaCl
Explanation:
Step 1: Given data
- Concentration of NaCl: 15.0% m/m
- Mass of the solution: 250.0 g
Step 2: Calculate how many grams of NaCl are in 250.0 g of solution
The concentration of NaCl is 15.0% by mass, that is, there are 15.0 g of NaCl every 100 g of solution.
250.0 g Solution × 15.0 g NaCl/100 g Solution = 37.5 g NaCl
The ions of Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
The periodic table is a systematic arrangement of elements in order of their atomic numbers into a set of 8 columns each called groups and a set of 7 rows each called a period.
Elements are arranged in different groups according to the number of Valence electrons they have.
- For instance, elements in the group I of the periodic table are highly electropositive and as such are highly reactive.
The same is evident in group 7 elements are highly electronegative and have high electron affinity and as such are unstable and reactive.
- However, Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
Consequently, the <em>Noble gases ion</em> has a stable Valence electron configuration.
Read more:
brainly.com/question/5336231