The pressure of the nitrogen gas produced is determined as 44.77 atm.
<h3>
What is the pressure of the Nitrogen gas?</h3>
The pressure of the nitrogen gas is determined from ideal gas equation, as shown below;
PV = nRT
P = nRT/V
where;
- n is number of moles = 2 moles
- R is ideal gas constant = 0.08205 L.atm/mol.K
- T is temperature = 68⁰C = 68 + 273 = 341 K
- V is volume = 1.25 L
P = (2 x 0.08205 x 341)/(1.25)
P = 44.77 atm.
Learn more about pressure here: brainly.com/question/25736513
#SPJ1
Answer:
212.5 mL
both the original and the diluted solution have 0.765 moles of KCl
Explanation:
c1V1 = c2V2
V2 = c1V1/c2 = (1.8 M×425 mL)/1.2 M = 637.5 mL
(637.5 - 425) mL = 212.5 mL
n = (1.8 mol/L)(0.425 L) = 0.765 moles of KCl
since it's a dilution, the diluted solution has the same number of moles as the original solution, 0.765 moles of KCl
The correct option is STRONTIUM.
Strontium is a group 2 element, that means it has two electrons in its outermost shell. This element will prefer to lose these two electrons in its outermost shell in order to attain the octet form, therefore, it will form electrovalent bond with non metals which it can donate two electrons to.
The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.