Explanation:
This is because gas particles are free to move as they are not held in place by strong molecular forces while particles in a solid are
In a food chain, energy is passed through one link to another. When a herbivore eats only a certain fraction of the energy, (which comes from the food) it becomes new body mass; the rest of the energy is lost as waste or used up by the herbivore in order to carry out its life processes (ex. movement, digestion, reproduction). It doesn’t necessarily threaten the plants survival, there’s also a benefit. When a animals poops out the fruit (defecate) in another area those seeds get carried to new places with the help of a dab of fertilizer and a little bit of moisture. They also help supply nutrients when they die and decompose.
A redox reaction --> a reaction whereby oxidation & reduction occurs
Reduction:
Charge of Cl2 = 0
Charge of Cl- in NaCl = -1
Hence, since charge of Cl2 decreased from 0 in Cl2 to -1 in NaCl, reduction occured.
Oxidation:
Charge of Na = 0
Charge of Na+ in NaCl = +1
Hence, since charge of Na increased from 0 in Na to +1 in NaCl, oxidation occured.
Since both oxidation & reduction occured in the reaction, it is a redox reaction.
Answer:
I think the answer would be option d.
hope it helps.
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>