Answer:
9.4 m
Explanation:
We can use a moving frame of reference with the same speed as the car. From this frame of reference the car doesn't move. The origin is at the back of the car, the positive X axis points back and the positive Y axis points up.
If the ballon is launched at 9.7 m/s at 39 degrees of elevation.
Vx0 = 9.7 * cos(39) = 7.5 m/s
Vy0 = 9.7 * sin(39) = 6.1 m/s
If we ignore air drag, the baloon will be subject only to the acceleration of gravity. We can use the equation of position under constant acceleration.
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
Y0 = 0
a = -9.81 m/s^2
It will fall when Y(t) = 0
0 = 6.1 * t - 4.9 * t^2
0 = t * (6.1 - 4.9 * t)
t1 = 0 (this is when the balloon was launched)
0 = 6.1 - 4.9 * t2
4.9 * t2 = 6.1
t2 = 6.1 / 4.9 = 1.25 s
The distance from the car will be the horizonta distance it travelled in that time
X(t) = X0 + Vx0 * t
X(1.25) = 7.5 * 1.25 = 9.4 m
Answer:
60 N
Explanation:
This is just Newton's Second Law
F = m*a
F = ?
m = 12 kg
a = 5 m/^2
F = 5*12 = 60 Newtons
Answer:
The value of heat transfer during the process Q = - 29.49 KJ
Explanation:
Given data
= 50
= 344.7 k pa
= 0.113 
F = 366.4 K
= 477.6 K
Poly tropic index n = 1.2
gas constant for oxygen = 0.26 
From ideal gas equation
= m R 
Put all the values in above equation we get
⇒ 344.7 × 0.113 = m × 0.26 × 366.4
⇒ m = 0.408 kg
Heat transfer in poly tropic process is given by
Q = ![\frac{\gamma - n}{( \gamma - 1)( n - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cgamma%20-%20n%7D%7B%28%20%5Cgamma%20-%201%29%28%20n%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
Put all the values in above formula we get
⇒ Q = ![\frac{1.4 - 1.2}{( 1.4 - 1)( 1.2 - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B1.4%20-%201.2%7D%7B%28%201.4%20-%201%29%28%201.2%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
⇒ Q = 2.5 × 0.408 × 0.26 × ( 366.4 - 477.6 )
⇒ Q = - 29.49 KJ
This is the value of heat transfer during the process & negative sign shows that heat is lost during the process.
Answer:
The speed of a wave would be 18 with a wavelength of 2 m and a frequency of 9 Hz.
Answer:
<h2>918,750 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass in kg
v is the velocity in m/s
From the question
m = 1500 kg
v = 35 m/s
We have

We have the final answer as
<h3>918,750 J</h3>
Hope this helps you